Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine

Abstract

Pathogenic Escherichia coli are responsible for a variety of diseases, including diarrhoea, haemolytic uraemic syndrome, kidney infection, septicaemia, pneumonia and meningitis. Toxins called cytotoxic necrotizing factors (CNFs) are among the virulence factors produced by uropathogenic (CNF1)1 or enteropathogenic (CNF2)2 E. coli strains that cause diseases in humans and animals, respectively. CNFs induce an increase in the content of actin stress fibres and focal contacts in cultured cells3,4. Effects of CNFs on the actin cytoskeleton correlated with a decrease in the electrophoretic mobility of the GTP-binding protein Rho4,5 and indirect evidence indicates that CNF1 might constitutively activate Rho6. Here we show that CNF1 catalyses the deamidation of a glutamine residue at position 63 of Rho, turning it into glutamic acid, which inhibits both intrinsic GTP hydrolysis and that stimulated by its GTPase-activating protein (GAP). Thus, this deamidation of glutamine 63 by CNF1 leads to the constitutive activation of Rho, and induces the reorganization of actin stress fibres. To our knowledge, CNF1 is the first example of a bacterial toxin acting by deamidation of a specific target protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of actin stress fibres in Vero cells by CNF1 and modification of the electrophoretic mobility of the Rho GTP-binding protein by CNF1 in vivo.
Figure 2: CNF1-induced mobility-shifting of RhoA in vitro.
Figure 3: Deamidation of Rho glutamine 63 by CNF1.
Figure 4: Electrophoretic mobility shift, time course of [35S]GTP-γS dissociation, and determination of the intrinsic and rhoGAP-stimulated GTP hydrolysis of RhoA wild type, Q63E RhoA, and CNF1-treated RhoA.
Figure 5: Microinjection into Vero cells of CNF1-treated RhoA, Q63E RhoA and RhoA.

Similar content being viewed by others

References

  1. Caprioli, A., Falbo, V., Roda, L. G., Ruggeri, F. M. & Zona, C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological alterations. Infect. Immun. 39, 1300–1306 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. De Rycke, J.et al. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates. J. Clin. Microbiol. 28, 694–699 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fiorentini, C.et al. Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor of Escherichia coli. Toxicon 26, 1047–1056 (1988).

    Article  CAS  Google Scholar 

  4. Oswald, E.et al. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc. Natl Acad. Sci. USA 91, 3814–3818 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Fiorentini, C.et al. Escherichia coli cytotoxic necrotizing factor 1 increases actin assembly via the p21 Rho protein. P. Zbl. Bakt. (suppl.) 24, 404–405 (1994).

    Google Scholar 

  6. Fiorentini, C.et al. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase. Infect. Immun. 63, 3936–3944 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeramian, P., Chardin, P., Madaule, P. & Tavitian, A. Nucleotide sequence of human Rho cDNA clone 12. Nucleic Acids Res. 15, 1869 (1987).

    Article  CAS  Google Scholar 

  8. Der, C. J., Finkel, T. & Cooper, G. M. Biological and biochemical properties of human ras H genes mutated at codon 61. Cell 44, 167–176 (1986).

    Article  CAS  Google Scholar 

  9. Srivastava, S. K., Yuasa, Y., Reynolds, S. H. & Aaronson, S. A. Effects of two major activating lesions on the structure and conformation of human Ras oncogene products. Proc. Natl Acad. Sci. USA 82, 38–42 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Garrett, M. D., Major, G. N., Totty, N. & Hall, A. Purification and N-terminal sequence of the p21 Rho GTPase activating protein RhoGAP. Biochem. J. 276, 833–836 (1991).

    Article  CAS  Google Scholar 

  11. Ridley, A. J. Microinjection of Rho and Rac into quiescent swiss 3T3 cells. Methods Enzymol. 256, 313–320 (1995).

    Article  CAS  Google Scholar 

  12. Machesky, L. M. & Hall, A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol. 6, 304–310 (1996).

    Article  CAS  Google Scholar 

  13. Ridley, A. J. & Hall, A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–400 (1992).

    Article  CAS  Google Scholar 

  14. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  15. Nobes, C. D. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  16. Falzano, L.et al. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol. Microbiol. 9, 1247–1254 (1993).

    Article  CAS  Google Scholar 

  17. Nishiyama, T.et al. Rac p21 is involved in insulin-induced membrane ruffling and Rho p21 is involved in hepatocyte growth factor-and 12-O-tetradecanoylphorbol-13 acetate (TPA)-induced membrane ruffling in KB cells. Mol. Cell. Biol. 14, 2447–2456 (1994).

    Article  CAS  Google Scholar 

  18. Adam, T., Giry, M., Boquet, P. & Sansonetti, P. Rho-dependent membrane folding causes Shigella entry into cells. EMBO J. 15, 3315–3321 (1996).

    Article  CAS  Google Scholar 

  19. Watarai, M., Kamata, Y., Kozaki, S. & Sasakawa, C. Rho, a small GTP-binding protein, is essential for Shigella invasion of epithelial cells. J. Exp. Med. 185, 281–292 (1997).

    Article  CAS  Google Scholar 

  20. Walker, K. E. & Weiss, A. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect. Immun. 62, 3817–3828 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Falbo, V., Pace, T., Picci, L., Pizzi, E. & Caprioli, A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect. Immun. 61, 4909–4914 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Horiguchi, Y., Senda, T., Sugimoto, N., Katahira, J. & Matsuda, M. Bordetella bronchiseptica dermonecrotizing toxin stimulates assembly of actin stress fibers and focal adhesion points by modifying the small GTP-binding protein Rho. J. Cell Sci. 108, 3243–3251 (1995).

    CAS  PubMed  Google Scholar 

  23. Self, A. J. & Hall, A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256, 3–10 (1995).

    Article  CAS  Google Scholar 

  24. Franco, M., Chardin, P., Chabre, M. & Paris, S. Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J. Biol. Chem. 271, 1573–1578 (1996).

    Article  CAS  Google Scholar 

  25. Self, A. J. & Hall, A. Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates. Methods Enzymol. 256, 67–76 (1995).

    Article  CAS  Google Scholar 

  26. Higashijima, T., Ferguson, K. M., Smigel, M. D. & Gilman, A. G. The effect of GTP and Mg2+on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem. 262, 757–761 (1987).

    CAS  PubMed  Google Scholar 

  27. Chardin, P.et al. The mammalian G-protein RhoC is ADP-ribosylated by Clostridium botulinum C3 and affects actin microfilaments in Vero cells. EMBO J. 8, 1087–1092 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. d'Alayer and M. Davi (Institut Pasteur, Paris, France) for trypsin digestion and amino-acid sequencing of Rho proteins; A. Hall for the gift of Rho and RhoGAP expression vectors; J. R. Murphy, E. Van Obberghen-Schilling. P. Cossart and A. Galmiche for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Boquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatau, G., Lemichez, E., Gauthier, M. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997). https://doi.org/10.1038/42743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42743

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing