Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Casein kinase I transduces Wnt signals

Abstract

The Wnt signalling cascade is essential for the development of both invertebrates and vertebrates, and is altered during tumorigenesis. Although a general framework for Wnt signalling has been elucidated, not all of the components have been identified. Here we describe a serine kinase, casein kinase I (CKI), which was isolated by expression cloning in Xenopus embryos. CKI reproduces several properties of Wnt signals, including generation of complete dorsal axes, stabilization of β-catenin and induction of genes that are direct targets of Wnt signals. Dominant-negative forms of CKI and a pharmacological blocker of CKI inhibited Wnt signals in Xenopus. Inhibiting CKI in Caenorhabditis elegans generated worms with a mom phenotype, indicative of a loss of Wnt signals. In addition, CKI bound to and increased the phosphorylation of dishevelled, a known component of the Wnt pathway. These data indicate that CKI may be a conserved component of the Wnt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CKI produces complete secondary dorsal axes.
Figure 2: CKI stabilizes β-catenin and induces the expression of Wnt-specific markers.
Figure 3: Blocking CKI inhibits Wnt signalling in Xenopus.
Figure 4: CKI RNA interference produces the mom phenotype in C. elegans.
Figure 5: CKI functions between dishevelled and GSK-3.
Figure 6: CKI binds to and increases the phosphorylation of dishevelled.

Similar content being viewed by others

References

  1. Cadigan,K. & Nusse,R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  2. Moon,R., Brown,J. & Torres,M. WNT's modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).

    Article  CAS  Google Scholar 

  3. Nusse,R. & Varmus,H. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  Google Scholar 

  4. Rubinfeld,B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  5. Heasman,J. et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994).

    Article  CAS  Google Scholar 

  6. Smith,W. & Harland,R. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765 (1991).

    Article  CAS  Google Scholar 

  7. He,X., Saint-Jeannet,J., Woodgett,J., Varmus,H. & Dawid,I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Pierce,S. & Kimelman,D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755–765 (1995).

    CAS  PubMed  Google Scholar 

  9. Molenaar,M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  10. Behrens,J. et al. Functional interactions of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Thorpe,C., Schlesinger,A., Carter,J. & Bowerman,B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  Google Scholar 

  12. Rocheleau,C. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  Google Scholar 

  13. Bhanot,P. et al. A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382, 225–230 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Xu,Q., D'Amore,P. & Sokol,S. Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development 125, 4767–4776 (1998).

    CAS  PubMed  Google Scholar 

  15. Yost,C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).

    Article  CAS  Google Scholar 

  16. McKendry,R., Hsu,S., Harland,R. & Grosschedl,R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420–431 (1997).

    Article  CAS  Google Scholar 

  17. Brannon,M., Gomperts,M., Sumoy,L., Moon,R. & Kimelman,D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  Google Scholar 

  18. Carnac,G., Kodjabachian,L., Gurdon,J. & Lemaire,P. The homeobox gene Siamois is a target of the Wnt dorsalization pathway and triggers organiser activity in the absence of mesoderm. Development 122, 3055–3065 (1996).

    CAS  PubMed  Google Scholar 

  19. Tuazon,P. & Traugh,J. in Advances in Second Messenger and Phosphoprotein Research Vol. 23, 123–164 (Raven, New York, 1991).

    Google Scholar 

  20. Fish,K., Cegielska,A., Getman,M., Landes,G. & Virshup,D. Isolation and characterization of human casein kinase I epsilon (CKI),, a novel member of the CKI gene family. J. Biol. Chem. 270, 14875–14833 (1995).

    Article  CAS  Google Scholar 

  21. Songyang,Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases (I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16, 6486–6493 (1996).

    Article  CAS  Google Scholar 

  22. Hoekstra,M. et al. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 253, 1031–1034 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Kloss,B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94, 97–107 (1998).

    Article  CAS  Google Scholar 

  24. Zhu,J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 (1998).

    Article  CAS  Google Scholar 

  25. McMahon,A. & Moon,R. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989).

    Article  CAS  Google Scholar 

  26. Thomsen,G. et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493 (1990).

    Article  CAS  Google Scholar 

  27. Sasai,Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  Google Scholar 

  28. DeMaggio,A., Lindberg,R., Hunter,T. & Hoekstra,M. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc. Natl Acad. Sci. 89, 7008–7012 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Scharf,S. & Gerhart,J. Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation. Dev. Biol. 99, 75–87 (1983).

    Article  CAS  Google Scholar 

  30. Newport,J. & Kirschner,M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–696 (1982).

    Article  CAS  Google Scholar 

  31. LeSueur,J. & Graff,J. Spemann organizer activity of Smad10. Development 126, 137–146 (1999).

    CAS  PubMed  Google Scholar 

  32. Graff,J., Thies,R., Song,J., Celeste,A. & Melton,D. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179 (1994).

    Article  CAS  Google Scholar 

  33. Hoppler,S., Brown,J. & Moon,R. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10, 2805–2817 (1996).

    Article  CAS  Google Scholar 

  34. Chijiwa,T., Hagiwara,M. & Hidaka,H. A newly synthesized selective casein kinase I inhibitor, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide, and affinity purification of casein kinase I from bovine testis. J. Biol. Chem. 264, 4924–4927 (1989).

    CAS  PubMed  Google Scholar 

  35. Tabara,H., Grishok,A. & Mello,C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  Google Scholar 

  36. Sharp,P. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).

    Article  CAS  Google Scholar 

  37. Fire,A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Willert,K., Brink,M., Wodarz,A., Varmus,H. & Nusse,R. Cusein kinase 2 associates with and phosphorylates Dishevelled. EMBO J. 16, 3089–3096 (1997).

    Article  CAS  Google Scholar 

  39. Deardorff,M., Tan,C., Conrad,L. & Klein,P. Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125, 2687–2700 (1998).

    CAS  PubMed  Google Scholar 

  40. Sokol,S. Analysis of Dishevelled signaling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  Google Scholar 

  41. Zeng,L. et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  Google Scholar 

  42. Yost,C. et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031–1041 (1998).

    Article  CAS  Google Scholar 

  43. Yanagawa,S., van Leeuwen,F., Wodarz,A., Klingensmith,J. & Nusse,R. The dishevelled protein is modified by Wingless signaling in Drosophila. Genes Dev. 9, 1087–1097 (1995).

    Article  CAS  Google Scholar 

  44. Graff,J., Bansal,A. & Melton,D. Xenopus Mad proteins transduce distinct subsets of signals for the TGFβ superfamily. Cell 85, 479–487 (1996).

    Article  CAS  Google Scholar 

  45. Ho,S., Hunt,H., Horton,R., Pullen,J. & Pease,L. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  46. Bowerman,B., Tax,F., Thomas,J. & Priess,J. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development 116, 1113–1122 (1992).

    CAS  PubMed  Google Scholar 

  47. Bowerman,B., Draper,B., Mello,C. & Priess,J. The material gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74, 443–452 (1993).

    Article  CAS  Google Scholar 

  48. Epstein,H. & Shakes,D. in Methods in Cell Biology (eds Wilson, L. & Matsudaira, P.) (Academic, San Diego, 1995).

    Google Scholar 

  49. Krieg,P. A., Varnum,S., Wormington,M. & Melton,D. A. The mRNA encoding elongation factor 1α (EF-1α) is a major transcript at the mid blastula transition in Xenopus. Dev. Biol. 133, 93–100 (1989).

    Article  CAS  Google Scholar 

  50. Chien,C., Bartel,P., Sternglanz,R. & Fields,S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. 88, 9578–9582 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Avery, M. Henkemeyer, J. Jiang, R. Lalan, L. Meng, L. Parada, and members of the Graff lab for support and comments. We also thank X. Cao, M. Cobb, F. Constantini (axin), C. Cowan, R. Harland (Xwnt-8, β-galactosidase, pCS105), J. Heasman, D. Kessler, D. Kimelman (GBP, GSK-3), P. Klein (XFz8, Nfz), R. Lin, R. Moon, B. Powell (mouse neonatal brain yeast two-hybrid library), J. Priess (3NB12 and ICB4 antibodies), S. Sokol (Xdsh, Xdd1), D. Turner (pCS2 + MT), and C. Wylie (β-catenin) for providing reagents and technical advice. J.P.M. was supported by NIH and Established Investigator AHA awards to L. Avery, in whose laboratory the C. elegans experiments were conducted. This work was supported by an NIH award to J.M.G. J.M.G. is a March of Dimes Basil O'Connor Scholar and a Charles E. Culpeper Medical Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Graff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, J., McKay, R., McKay, J. et al. Casein kinase I transduces Wnt signals. Nature 401, 345–350 (1999). https://doi.org/10.1038/43830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43830

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing