Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein

Abstract

Human adenoviruses1 are responsible for respiratory, gastro-enteric and ocular infections2 and can serve as gene therapy vectors3. They form icosahedral particles with 240 copies of the trimeric hexon protein arranged on the planes and a penton complex at each of the twelve vertices. The penton consists of a pentameric base, implicated in virus internalization4, and a protruding trimeric fibre, responsible for receptor attachment5. The fibres are homo-trimeric proteins containing an amino-terminal penton base attachment domain, a long, thin central shaft and a carboxy-terminal cell attachment or head domain. The shaft domain contains a repeating sequence motif with an invariant glycine or proline and a conserved pattern of hydrophobic residues6. Here we describe the crystal structure at 2.4 Å resolution of a recombinant protein containing the four distal repeats of the adenovirus type 2 fibre shaft plus the receptor-binding head domain. The structure reveals a novel triple β-spiral fibrous fold for the shaft. Implications for folding of fibrous proteins (misfolding of shaft peptides leads to amyloid-like fibrils) and for the design of a new class of artificial, silk-like fibrous materials are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The adenovirus fibre fold.
Figure 2: Alignment of the 22 repeats15 in the Ad2 shaft.
Figure 3: Interactions in the shaft.
Figure 4: Space-filled representation of a model containing 21 repeats of the shaft.

Similar content being viewed by others

References

  1. Schenk,T. in Fields Virology 2111–2148 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  2. Horwitz,M. S. in Fields Virology 2149–2171 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  3. Robbins,P. D., Tahara,H. & Ghivizzani,S. C. Viral vectors for gene therapy. Trends Biotechnol. 16, 35–40 (1998).

    ADS  CAS  PubMed  Google Scholar 

  4. Wickham,T. J., Mathias,P., Cheresh,D. A. & Nemerow,G. R. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    CAS  PubMed  Google Scholar 

  5. Philipson,L., Lonberg-Holm,K. & Petterson,U. Virus-receptor interaction in an adenovirus system. J. Virol. 2, 1064–1075 (1986).

    Google Scholar 

  6. Green,N.M., Wrigley,N. G., Russel,W. C., Martin,S. R. & McLachlan,A. Evidence for a repeating cross β structure in the adenovirus fibre. EMBO J. 2, 1357–1365 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chroboczek,J., Ruigrok,R. W. H. & Cusack,S. Adenovirus fiber. Curr. Top. Microbiol. Immunol. 199, 163–200 (1995).

    CAS  PubMed  Google Scholar 

  8. Hong,J. S. & Engler,J. A. Domains required for assembly of adenovirus type 2 fiber trimers. J. Virol. 70, 7071–7078 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Raaij,M. J., Louis,N., Chroboczek,J. & Cusack,S. Structure of the human adenovirus serotype 2 fiber head domain at 1.5 Å resolution. Virology 262, 333–343 (1999).

    CAS  PubMed  Google Scholar 

  10. Xia,D., Henry,L. J., Gerard,R. D. & Deisenhofer,J. Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Å resolution. Structure 2, 1259–1270 (1994).

    CAS  PubMed  Google Scholar 

  11. Bergelson,J. M. et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    CAS  PubMed  Google Scholar 

  12. Roelvink,P. W. et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. 72, 7909–7915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stouten,P. F. W., Sander,C., Ruigrok,R. W. H. & Cusack,S. New triple-helical model for the shaft of the adenovirus fibre. J. Mol. Biol. 226, 1073–1084 (1992).

    CAS  PubMed  Google Scholar 

  14. Devaux,C., Adrian,M., Berthet-Colominas,C., Cuasck,S. & Jacrot,B. Structure of adenovirus fibre. I. Analysis of crystals of fibre from adenovirus serotypes 2 and 5 by electron microscopy and X-ray crystallography. J. Mol. Biol. 215, 567–588 (1990).

    CAS  PubMed  Google Scholar 

  15. Louis,N. Etude de la structure de la fibre de l'adénovirus humain de la sérotype 2; son dévenir et son rôle au cours de l'infection. PhD thesis, Univ. Joseph-Fourier, Grenoble (1994).

    Google Scholar 

  16. Mitraki,A. et al. Unfolding studies of human adenovirus type 2 fiber trimers: evidence for a stable domain. Eur. J. Biochem. 264, 599–606 (1999).

    CAS  PubMed  Google Scholar 

  17. Devaux,C., Caillet-Boudin,M. L., Jacrot,B. & Boulanger,P. Crystallization, enzymatic cleavage, and the polarity of the adenovirus type 2 fiber. Virology 161, 121–128 (1987).

    CAS  PubMed  Google Scholar 

  18. Brunger,A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    CAS  PubMed  Google Scholar 

  19. Ruigrok,R. W. H., Barge,A., Albiges-Rizo,C. & Dayan,S. Structure of adenovirus fibre. II. Morphology of single fibres. J. Mol. Biol. 215, 589–596 (1990).

    CAS  PubMed  Google Scholar 

  20. Ruigrok,R. W. H., Barge,A., Mittel,S. K. & Jacrot,B. The fibre of bovine adenovirus type 3 is very long but bent. J. Gen. Virol. 75, 2069–2073 (1994).

    CAS  PubMed  Google Scholar 

  21. Hess,M., Cuzange,A., Ruigrok,R. W. H., Chroboczek,J. & Jacrot,B. The avian adenovirus penton: two fibres and one base. J. Mol. Biol. 252, 379–385 (1995).

    CAS  PubMed  Google Scholar 

  22. Beck,B. & Brodsky,B. Supercoiled protein motifs: The collagen triple-helix and the a-helical coiled coil. J. Struct. Biol. 122, 17–29 (1998).

    CAS  PubMed  Google Scholar 

  23. Steinbacher,S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    ADS  CAS  PubMed  Google Scholar 

  24. Yoder,M. D., Keen,N. T. & Jurnak,F. New domain motif: Structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503–1507 (1993).

    ADS  CAS  PubMed  Google Scholar 

  25. Marsh,R. E., Corey,R. B. & Pauling,L. The structure of Tussah silk fibroin. Acta Crystallogr. 8, 710–715 (1955).

    CAS  Google Scholar 

  26. Cerritelli,M. E, Walls,J. S., Simon,M. N., Conway,J. F. & Steven,A. C. Stoichiometry and dominant organization of the long-fiber of bacteriophage T4: A hinged viral adhesion. J. Mol. Biol. 260, 767–780 (1996).

    CAS  PubMed  Google Scholar 

  27. Tao,Y., Strelkov,S. V., Mesyanshinov,V. & Rossmann,M. G. Structure of bacteriophage T4 fibritin: A segmented coiled coil and the role of the C-terminal domain. Structure 5, 789–798 (1997).

    CAS  PubMed  Google Scholar 

  28. Betts,S. & King,J. There's a right and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure 7, R131–R139 (1999).

    CAS  PubMed  Google Scholar 

  29. O'Brien,J. P. et al. in Silk Polymers, Materials Science and Biotechnology 104–117 (ACS Symposium Series 544, American Chemical Society, Charlottesville, Virginia, 1993).

    Google Scholar 

  30. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

We thank P. Goeltz and N. Cohet for help with cloning, expression and purification and J. Gagnon for comments. M.J.v.R. was supported by an EU Biotech II fellowship. The EMBL-ESRF Joint Structural Biology Group provided synchrotron radiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cusack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Raaij, M., Mitraki, A., Lavigne, G. et al. A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999). https://doi.org/10.1038/44880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44880

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing