Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A structural change in the kinesin motor protein that drives motility

Abstract

Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of a 15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance, fluorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy. This region becomes immobilized and extended towards the microtubule ‘plus’ end when kinesin binds microtubules and ATP, and reverts to a more mobile conformation when γ-phosphate is released after nucleotide hydrolysis. This conformational change explains both the direction of kinesin motion and processive movement by the kinesin dimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the rat kinesin monomer25 (numbered as in human kinesin).
Figure 2: Electron paramagnetic resonance spectra for kinesin C333–MSL in several nucleotide states, both free in solution and bound to microtubules.
Figure 3: Nucleotide-dependent energy transfer between GFP (donor) at the end of the neck linker and tetramethylrhodamine (acceptor) at C220.
Figure 4: Three-dimensional and difference maps of gold labelled motors attached to microtubules calculated by cryo-EM and image analysis.
Figure 5: Models for motility by truncated kinesin monomers and processive dimers.

Similar content being viewed by others

References

  1. Goldstein,L. S. B. & Philp,A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  Google Scholar 

  2. Vale,R. D. & Fletterick,R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).

    Article  CAS  Google Scholar 

  3. Kull,F. J., Sablin,E. P., Lau,R., Fletterick,R. J. & Vale,R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Sablin,E. P., Kull,F. J., Cooke,R., Vale,R. D. & Fletterick,R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–559 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Howard,J., Hudspeth,A. J. & Vale,R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Svoboda,K., Schmidt,C. F., Schnapp,B. J. & Block,S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Berliner,E., Young,E. C., Anderson,K., Mahtani,H. & Gelles,J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718–721 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Vale,R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Hancock,W. O. & Howard,J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  Google Scholar 

  10. Hackney,D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Ma,Y.-Z. & Taylor,E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  Google Scholar 

  12. Gilbert,S. P., Moyer,M. L. & Johnson,K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998).

    Article  CAS  Google Scholar 

  13. Rayment,I. et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Dominguez,R., Freyzon,Y., Trybus,K. M. & Cohen,C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  15. Corrie,J. E. T. et al. Dynamic measurements of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Suzuki,Y., Yasunaga,T., Ohkura,R., Wakabayashi,T. & Sutoh,K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Case,R. B., Pierce,D. W., Hom-Booher,N., Hart,C. L. & Vale,R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  Google Scholar 

  18. Henningsen,U. & Schliwa,M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Endow,S. A. & Waligora,K. W. Determinants of kinesin motor polarity. Science 281, 1200–1202 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Arnal,I. & Wade,R. H. Nucleotide-dependent conformation of the kinesin dimer interacting with microtubules. Structure 1998, 33–38 (1998).

    Article  Google Scholar 

  21. Hirose,K., Lowe,J., Alonso,M., Cross,R. A. & Amos,L. A. Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. Mol. Biol. Cell 10, 2063–2074 (1999).

    Article  CAS  Google Scholar 

  22. Hirose,K., Lockhart,A., Cross,R. A. & Amos,L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Mchaourab,H. S., Lietzow,M. A., Hideg,K. & Hubbell,W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).

    Article  CAS  Google Scholar 

  24. Naber,N., Cooke,R. & Pate,E. Binding of ncd to microtubules induces a conformational change near the junction of the motor domain with the neck. Biochemistry 36, 9681–9689 (1997).

    Article  CAS  Google Scholar 

  25. Sack,S. et al. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155–16165 (1997).

    Article  CAS  Google Scholar 

  26. Kozielski,F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  Google Scholar 

  27. Stone,D. B., Hjelm,R. P. Jr & Mendelson,R. A. Solution structures of dimeric kinesin and Ncd motors. Biochemistry 38, 4938–4947 (1999).

    Article  CAS  Google Scholar 

  28. Marx,A. et al. Conformations of kinesin: solution versus crystal structures and interactions with microtubules. Eur. Biophys. J. 27, 455–465 (1998).

    Article  CAS  Google Scholar 

  29. Fisher,A. J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF-4. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  30. Houdusse,A., Kalabokis,V. N., Himmel,D., Szent-Gyorgyi,A. G. & Cohen,C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  Google Scholar 

  31. Sosa,H. et al. A model for the microtubule-ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997).

    Article  CAS  Google Scholar 

  32. Kozielski,F., Arnal,I. & Wade,R. H. A model of the microtubule-kinesin complex based upon electron cryomicroscopy and X-ray crystallography. Curr. Biol. 8, 191–198 (1998).

    Article  CAS  Google Scholar 

  33. Hoenger,A. et al. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with X-ray crystallography. Curr. Biol. 8, 191–198 (1998).

    Article  Google Scholar 

  34. Ma,Y. Z. & Taylor,E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).

    Article  CAS  Google Scholar 

  35. Romberg,L. & Vale,R. D. Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Romberg,L., Pierce,D. W. & Vale,R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell. Biol. 140, 1407–1416 (1998).

    Article  CAS  Google Scholar 

  37. Jiang,W. & Hackney,D. D. Monomeric kinesin head domains hydrolyze multiple ATP molecules before release from a microtubule. J. Biol. Chem. 272, 5616–5621 (1997).

    Article  CAS  Google Scholar 

  38. Moyer,M. L., Gilbert,S. P. & Johnson,K. A. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry 37, 800–813 (1998).

    Article  CAS  Google Scholar 

  39. Visscher,K., Schnitzer,M. J. & Block,S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  ADS  CAS  Google Scholar 

  40. Coppin,C. M., Pierce,D. W., Hsu,L. & Vale,R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).

    Article  ADS  CAS  Google Scholar 

  41. Thomas,D. D., Ramachandran,S., Roopnarine,O., Hayden,D. W. & Ostap,E. M. The mechanism of force generation in myosin: a disordered-to-order transition, coupled to internal structural changes. Biophys. J. 68 (suppl.), 135s–141s (1995).

    PubMed  Google Scholar 

  42. Wang,H. & Oster,G. Energy transduction in the F1 motor of the ATP synthase. Nature 396, 279–282 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Al-Shawi,M. & Nakamoto,R. Mechanism of energy coupling in the FoF1-ATP synthase: the uncoupling mutant, γM23K, disrupts the use of binding energy to drive catalysis. Biochemistry 36, 12954–12960 (1997).

    Article  CAS  Google Scholar 

  44. Weissman,J. S., Rye,H. S., Fenton,W. A., Beechem,J. M. & Horwich,A. L. Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  45. Fujiwara,S., Kull,F. J., Sablin,E. P., Stone,D. B. & Mendelson,R. A. The shapes of the motor domains of two oppositely directed microtubule motors, ncd and kinesin: a neutron scattering study. Biophys. J. 69, 1563–1568 (1995).

    Article  ADS  CAS  Google Scholar 

  46. Woehlke,G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  47. Safer,D. Undecagold cluster labeling of proteins at reactive cystein residues. J. Struct. Biol. 127, 371–374 (1999).

    Article  Google Scholar 

  48. Van Der Meer,B. W., Coker,G. & Chen,S.-Y. S. Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).

    Google Scholar 

  49. dos Remedios,C. G. & Moens,P. D. Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J. Struct. Biol. 115, 175–185 (1995).

    Article  CAS  Google Scholar 

  50. Barnett, V. A., Fajer,P., Polnaszek,C. F. & Thomas,D. D. High resolution detection of muscle crossbridge orientation by EPR. Biophys. J. 49, 144–147 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Sweeney for encouragement; A. Ruby for assistance with protein preparations; B. Sheehan for computing and image processing; and M. Tomishige for examining the processivity of cys-light K560–GFP. We thank R. Case and K. Thorn for comments on the manuscript. This work was supported, in part, by grants for the NIH (R.A.M., E.W.T., R.C. and R.D.V.), and the NSF (B.O.C.). S.R. is supported by the UCSF Graduate Group in Biophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. Vale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, S., Lin, A., Safer, D. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999). https://doi.org/10.1038/45483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing