Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of tumor growth and metastasis in Mgat5-deficient mice

Abstract

Golgi β1,6N-acetylglucosaminyltransferase V (MGAT5) is required in the biosynthesis of β1,6GlcNAc-branched N-linked glycans attached to cell surface and secreted glycoproteins. Amounts of MGAT5 glycan products are commonly increased in malignancies, and correlate with disease progression. To study the functions of these N-glycans in development and disease, we generated mice deficient in Mgat5 by targeted gene mutation. These Mgat5−/− mice lacked Mgat5 products and appeared normal, but differed in their responses to certain extrinsic conditions. Mammary tumor growth and metastases induced by the polyomavirus middle T oncogene was considerably less in Mgat5−/− mice than in transgenic littermates expressing Mgat5. Furthermore, Mgat5 glycan products stimulated membrane ruffling and phosphatidylinositol 3 kinase–protein kinase B activation, fueling a positive feedback loop that amplified oncogene signaling and tumor growth in vivo. Our results indicate that inhibitors of MGAT5 might be useful in the treatment of malignancies by targeting their dependency on focal adhesion signaling for growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MGAT5 in N-glycan biosynthesis, and overexpression of its products in human cancers.
Figure 2: Targeted mutation of the Mgat5 locus in mice.
Figure 3: Mouse embryo at embryonic day 7.5.
Figure 4: PyMT-dependent tumor growth is suppresses in Mgat5−/− mice.
Figure 5: Mammary fat pads and tumors.
Figure 6: Suppression of membrane ruffling, actin filament turnover and PKB phosphoprotein in PyMT Mgat5−/− tumor cells.

Similar content being viewed by others

References

  1. Yamashita, K., Ohkura, T., Tachibana, Y., Takasaki, S. & Kobata, A. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J. Biol. Chem. 259, 10834–10840 (1984).

    CAS  Google Scholar 

  2. Pierce, M. & Arango, J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-β(1,6)Man-α(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J. Biol. Chem. 261, 10772–10777 (1986).

    CAS  Google Scholar 

  3. Cummings, R.D., Trowbridge, I.S. & Kornfeld, S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc:α-D-mannoside β1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257, 13421–13427 (1982).

    CAS  Google Scholar 

  4. Shoreibah, M., et al. Isolation, characterization, and expression of cDNA encoding N-Acetylglucosaminyltransferase V. J. Biol. Chem. 268, 15381–15385 (1993).

    CAS  Google Scholar 

  5. Cummings, R.D. & Kornfeld, S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectin. J. Biol. Chem. 257, 11230–11234 (1982).

    CAS  Google Scholar 

  6. Fernandes, B., Sagman, U., Auger, M., Demetriou, M. & Dennis, J.W. β1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51, 718–723 (1991).

    CAS  Google Scholar 

  7. Seelentag, W.K. et al. Prognostic value of β1,6-branched oligosaccharides in human colorectal carcinoma. Cancer Res. 58, 5559–5564 (1998).

    CAS  Google Scholar 

  8. Yamashita, K., Tachibana, Y., Ohkura, T. & Kobata, A. Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J. Biol. Chem. 260, 3963–3969 (1985).

    CAS  Google Scholar 

  9. Dennis, J.W., Kosh, K., Bryce, D.-M. & Breitman, M.L. Oncogenes conferring metastatic potential induce increased branching of Asn-linked oligosaccharides in rat2 fibroblasts. Oncogene 4, 853–860 (1989).

    CAS  Google Scholar 

  10. Dennis, J.W., Laferte, S., Waghorne, C., Breitman, M.L. & Kerbel, R.S. β1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582–585 (1987).

    Article  CAS  Google Scholar 

  11. Kang, R. et al. Transcriptional regulation of the N-acetylglucosaminyltranserase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J. Biol. Chem. 271, 26706–26712 (1996).

    Article  CAS  Google Scholar 

  12. Chen, L., Zhang, W., Fregien, N. & Pierce, M. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products. Oncogene 17, 2087–2093 (1998).

    Article  CAS  Google Scholar 

  13. Lu, Y., Pelling, J.C. & Chaney, W.G. Tumor cells surface β1-6 branched oligosaccharides and lung metastasis. Clin. Exp. Metastasis 12, 47–54 (1994).

    Article  CAS  Google Scholar 

  14. Demetriou, M., Nabi, I.R., Coppolino, M., Dedhar, S. & Dennis, J.W. Reduced contact inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol. 130, 383–392 (1995).

    Article  CAS  Google Scholar 

  15. Seberger, P.J. & Chaney, W.G. Control of metastasis by asn-linked, β1-6 branched oligosaccharides in mouse mammary cancer cells. Glycobiology 9, 235–241 (1999).

    Article  CAS  Google Scholar 

  16. Do, K.-Y., Fregien, N., Pierce, M. & Cummings, R.D. Modification of glycoproteins by N-acetylglucosaminyltransferase V is greatly influenced by accessibility of the enzyme to oligosacharide acceptors. J. Biol. Chem. 269, 23456–23464 (1994).

    CAS  Google Scholar 

  17. Nakagawa, H. et al. Detailed oligosaccharide structures of human integrin alpha 5 beta 1 analyzed by a three-dimensional mapping technique. Eur. J. Biochem. 237, 76–85 (1996).

    Article  CAS  Google Scholar 

  18. Asada, M., Furukawa, K., Kantor, C., Gahmberg, C.G. & Kobata, A. Structural study of the sugar chains of human leukocyte cell adhesion molecules CD11/CD18. Biochemistry 30, 1561–1571 (1991).

    Article  CAS  Google Scholar 

  19. Skelton, T.P., Zeng, C., Nocks, A. & Stamenkovic, I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J. Cell Biol. 140, 431–446 (1998).

    Article  CAS  Google Scholar 

  20. Diamond, M.S., Staunton, D.E., Martin, S.D. & Springer, T.A. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991).

    Article  CAS  Google Scholar 

  21. McEvoy, L.M., Sun, H., Frelinger, J.G. & Butcher, E.C. Anti-CD43 inhibition of T cell homing. J. Exp. Med. 185, 1493–1498 (1997).

    Article  CAS  Google Scholar 

  22. Verbeek, B.S. et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 180, 383–388 (1996)

    Article  CAS  Google Scholar 

  23. Liu, A.X. et al. AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phosphatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res. 58, 2973–2977 (1998).

    CAS  Google Scholar 

  24. Dilworth, S.M. et al. Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367, 87–90 (1994).

    Article  CAS  Google Scholar 

  25. Whitman, M., Kaplan, D.R., Schaffhausen, B., Cantley, L. & Roberts, T.M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242 (1985).

    Article  CAS  Google Scholar 

  26. Guy, C.T., Muthuswamy, S.K., Cardiff, R.D., Soriano, P. & Muller, W.J. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev. 1, 23–32 (1994).

    Article  Google Scholar 

  27. Webster, M.A. et al. Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell. Biol. 18, 2344–2359 (1998).

    Article  CAS  Google Scholar 

  28. Guy, C.T., Cardiff, R.D. & Muller, W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    Article  CAS  Google Scholar 

  29. Bronson, R., Dawe, C., Carroll, J. & Benjamin, T. Tumor induction by a transformation-defective polyoma virus mutant blocked in signaling through Shc. Proc. Natl. Acad. Sci. USA 94, 7954–7958 (1997).

    Article  CAS  Google Scholar 

  30. Granovsky, M. et al. GlcNAc-transferase V and core 2 GlcNAc-transferase expression in the developing mouse embryo. Glycobiology 5, 797–806 (1995).

    Article  CAS  Google Scholar 

  31. Turner, C.E. Molecules in focus, paxillin. Int. J. Biol. Macromol. 30, 955–959 (1998).

    CAS  Google Scholar 

  32. Reif, K., Nobes, C.D., Thomas, G., Hall, A. & Cantrell, D.A. phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho dependent effector pathways. Curr. Biol. 6, 1445–1455 (1996).

    Article  CAS  Google Scholar 

  33. Spector, I., Shochet, N.R., Blasberger, D. & Kashman, Y. Latrunculins, novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil. Cytoskeleton 13, 127–124 (1989).

    Article  CAS  Google Scholar 

  34. Cheng, A.M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1999).

    Article  Google Scholar 

  35. Neznanov, N. et al. A single targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res. 59, 4242–4246 (1999).

    CAS  Google Scholar 

  36. Keely, P.J., Westwick, J.K., Whitehead, I.P., Der, C.J. & Parise, L.V. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390, 632–636 (1997).

    Article  CAS  Google Scholar 

  37. King, W.G., Mattaliano, M.D., Chan, T.O., Tsichlis, P.N. & Brugge, J.S. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Biol. Cell 17, 4406–4418 (1997).

    Article  CAS  Google Scholar 

  38. Humphries, M.J., Matsumoto, K., White, S.L. & Olden, K. Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16–F10 murine melanoma cells. Proc. Natl. Acad. Sci. USA 83, 1752–1756 (1986).

    Article  CAS  Google Scholar 

  39. Dennis, J.W. Effects of swainsonine and polyinosinic-polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res. 46, 5131–5136 (1986).

    CAS  Google Scholar 

  40. Goss, P.E., Baptiste, J., Fernandes, B., Baker, M. & Dennis, J.W. A study of swainsonine in patients with advanced malignancies. Cancer Res. 54, 1450–1457 (1994).

    CAS  Google Scholar 

  41. Hasty, P. & Bradley, A. in Gene Targeting. A Practical Approach (ed. Joyner, A.) 138–180 (IRL Oxford Press, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors thank C. Warren, S. Kulkarni and P. Cheung for suggestions. This research was supported by grants from National Cancer Institute of Canada, the Mizutani Foundation, the National Science and Engineering Research Council of Canada, and GlycoDesign (Toronto, Canada). W.J.M. is supported by a Medical Research Council Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Dennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granovsky, M., Fata, J., Pawling, J. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6, 306–312 (2000). https://doi.org/10.1038/73163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing