Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears

Abstract

For mammalian cochlear hair cells, fate determination is normally completed by birth. We report here that overexpression of Math1, a mouse homolog of the Drosophila gene atonal, in postnatal rat cochlear explant cultures resulted in extra hair cells. Surprisingly, we found that the source of the ectopic hair cells was columnar epithelial cells located outside the sensory epithelium in the greater epithelial ridge, which normally give rise to inner sulcus cells. Moreover, Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells. Thus Math1 was sufficient for the production of hair cells in the ear, and immature postnatal mammalian inner ears retained the competence to generate new hair cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of Math1 leads to robust production of extra hair cells in the GER of P0 rat cochlear explant cultures.
Figure 2: Morphological and immunocytochemical conversion of the GER cells into hair cells.
Figure 3: Ultrastructural analysis of ectopically induced hair cells.
Figure 4: Math1 induces a gradual morphological change in the GER cells.
Figure 5: Quantitative analysis of the gradual induction of hair cell differentiation at various culture times.
Figure 6: Math1 facilitates conversion of utricular supporting cells into hair cells.

Similar content being viewed by others

References

  1. Van de Water, T. R. in Development of Auditory and Vestibular Systems (ed. Romand, R.) 337–374 (Academic, New York, 1983).

    Book  Google Scholar 

  2. Ruben, R. J. Development of the inner ear of the mouse: A radioautographic study of terminal mitosis. Acta Otolaryngol. Suppl. 220, 1–44 (1967).

    Google Scholar 

  3. Balak, K. J., Corwin, J. T. & Jones, J. E. Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J. Neurosci. 10, 2502–2512 (1990).

    Article  CAS  Google Scholar 

  4. Corwin, J. & Cotanche, D. Regeneration of sensory hair cells after acoustic trauma. Science 240, 1772–1774 (1988).

    Article  CAS  Google Scholar 

  5. Ryals, B. M. & Rubel, E. W. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240, 1774–1776 (1988).

    Article  CAS  Google Scholar 

  6. Fekete, D. M. Cell fate specification in the inner ear. Curr. Opin. Neurobiol. 6, 533–541 (1996).

    Article  CAS  Google Scholar 

  7. Li, L. & Forge, A. Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. Int. J. Dev. Neurosci. 15, 433–446 (1997).

    Article  CAS  Google Scholar 

  8. Fekete, D. M., Muthukumar, S. & Karagogeos, D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci. 18, 7811–7821 (1998).

    Article  CAS  Google Scholar 

  9. Lim, J. & Rueda, J. in Development of Auditory and Vestibular Systems. (ed. Romand, R.) 33–58 (Elsevier, New York, 1992).

    Google Scholar 

  10. Fekete, D. M. Development of the vertebrate ear: insights from knockouts and mutants. Trends Neurosci. 22, 263–269 (1999).

    Article  CAS  Google Scholar 

  11. Lowenheim, H. et al. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc. Natl. Acad. Sci. USA 96, 4084–4088 (1999).

    Article  CAS  Google Scholar 

  12. Chen, P. & Segil, N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126, 1581–1590 (1999).

    CAS  PubMed  Google Scholar 

  13. Akazawa, C., Ishibashi, M., Shimizu, C., Naknish, S. & Kageyama, R. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730–8738 (1995).

    Article  CAS  Google Scholar 

  14. Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999).

    Article  CAS  Google Scholar 

  15. Zheng, J. L. & Gao, W.-Q. Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. Eur. J. Neurosci. 8, 1897–1905 (1996).

    Article  CAS  Google Scholar 

  16. Zheng, J. L. & Gao, W.-Q. Concanavalin A protects hair cells against gentamicin ototoxicity in rat cochlear explant cultures. J. Neurobiol. 39, 29–40 (1999).

    Article  CAS  Google Scholar 

  17. Hasson, T., Heintzelman, M. B., Santos-Sacchi, J., Corey, D. P. & Mooseker, M. S. Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc. Natl. Acad. Sci. USA 92, 9815–9819 (1995).

    Article  CAS  Google Scholar 

  18. Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 28, 76–84 (1999).

    Article  Google Scholar 

  19. Zheng, J. L. & Gao, W.-Q. Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J. Neurosci. 17, 8270–8282 (1997).

    Article  CAS  Google Scholar 

  20. Gibson, U. E., Heid, C. A. & Williams, P. M. A novel method for real time quantitative RT-PCR. Genome Res. 6, 995–1001 (1996).

    Article  CAS  Google Scholar 

  21. Sundaresan, S., Roberts, P. E., King, K. L., Sliwkowski, M. X. & Mather, J. P. Biological response to ErbB ligands in nontransformed cell lines correlates with a specific pattern of receptor expression. Endocrinology 139, 4756–4764 (1998).

    Article  CAS  Google Scholar 

  22. Sobkowicz, H. M., Bereman, B. & Rose, J. E. Organotypic development of the organ of Corti in culture. J. Neurocytol. 4, 543–572 (1975).

    Article  CAS  Google Scholar 

  23. Erkman, L. et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606 (1996).

    Article  CAS  Google Scholar 

  24. Xiang, M. et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc. Natl. Acad. Sci. USA 94, 9445–9450 (1997).

    Article  CAS  Google Scholar 

  25. Xiang, M., Gao, W.-Q., Hasson, T. & Shin, J. J. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125, 3935–3946 (1998).

    CAS  PubMed  Google Scholar 

  26. Zheng, J. L., Helbig, C. & Gao, W.-Q. Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J. Neurosci. 17, 216–226 (1997).

    Article  CAS  Google Scholar 

  27. Corwin, J. T. et al. Growth factors as potential drugs for the sensory epithelia of the ear. Ciba Found. Symp. 196, 167–182; discussion 182–187 (1996).

    CAS  PubMed  Google Scholar 

  28. Lewis, A. K., Frantz, G. D., Carpenter, D. A., de Sauvage, F. J. & Gao, W.-Q. Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech. Dev. 78, 159–163 (1998).

    Article  CAS  Google Scholar 

  29. Haddon, C., Jiang, Y. J., Smithers, L. & Lewis, J. Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644 (1998).

    CAS  PubMed  Google Scholar 

  30. Lanford, P. J. et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet. 21, 289–292 (1999).

    Article  CAS  Google Scholar 

  31. Stone, J. S. & Rubel, E. W. Delta1 expression during avian hair cell regeneration. Development 126, 961–973 (1999).

    CAS  PubMed  Google Scholar 

  32. Kageyama, R. & Nakanishi, S. Helix-loop-helix factor in growth and differentiation of vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665 (1997).

    Article  CAS  Google Scholar 

  33. Jarman, A., Grau, Y., Jan, L. & Jan, Y. Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321 (1993).

    Article  CAS  Google Scholar 

  34. Kim, P., Helms, A., Johnson, J. & Zimmerman, K. XATH-1, a vertebrate homolog of Drosophila atonal, induces aneuronal differentiation within ectodermal progenitors. Dev. Biol. 187, 1–12 (1997).

    Article  CAS  Google Scholar 

  35. Kelley, M. W., Xu, X. M., Wagner, M. A., Warchol, M. E. & Corwin, J. T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119, 1041–1053 (1993).

    CAS  PubMed  Google Scholar 

  36. Abdouh, A., Despres, G. & Romand, R. Hair cell overproduction in the developing mammalian cochlea in culture. Neuroreport 5, 33–36 (1993).

    Article  CAS  Google Scholar 

  37. Cotanche, D. A. & Lee, K. H. Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr. Opin. Neurobiol. 4, 509–514 (1994).

    Article  CAS  Google Scholar 

  38. Corwin, J. T. & Oberholtzer, J. C. Fish n' chicks: model recipes for hair-cell regeneration? Neuron 19, 951–954 (1997).

    Article  CAS  Google Scholar 

  39. Stone, J. S., Oesterle, E. C. & Rubel, E. W. Recent insights into regeneration of auditory and vestibular hair cells. Curr. Opin. Neurol. 11, 17–24 (1998).

    Article  CAS  Google Scholar 

  40. Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A. & Corwin, J. T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259, 1619–1622 (1993).

    Article  CAS  Google Scholar 

  41. Kuntz, A. L. & Oesterle, E. C. Transforming growth factor alpha with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. J. Comp. Neurol. 399, 413–423 (1998).

    Article  CAS  Google Scholar 

  42. Forge, A., Li, L. & Nevill, G. Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J. Comp. Neurol. 397, 69–88 (1998).

    Article  CAS  Google Scholar 

  43. Rubel, E. W., Dew, L. A. & Roberson, D. W. Mammalian vestibular hair cell regeneration. Science 267, 701–707 (1995).

    Article  CAS  Google Scholar 

  44. Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A. & Corwin, J. T. Response to: Mammalian vestibular hair cell regeneration. Science 267, 704–706 (1995).

    Article  CAS  Google Scholar 

  45. Zheng, J. L., Keller, G. & Gao, W.-Q. Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. J. Neurosci. 19, 2161–2170 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kageyama for providing the Math1 cDNA (pCMV-Math1 plasmid) and M. Murone for providing the pRK5-EGFP plasmid for reconstruction of the pRK5-Math1-EGFP plasmid. We also thank T. Hasson for the anti-myosin VIIa antibody, M. Xiang for the pRK5SK-mBrn3c plasmid, A. Rosenthal and H. Sobkowicz for discussions, J. Shou for reading the manuscript, L. Rangell and G. Keller for electron microscopy, H. Aaron for confocal microscopy and A. Bruce for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qiang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Gao, WQ. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3, 580–586 (2000). https://doi.org/10.1038/75753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing