Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts

Abstract

Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL; MIM 221770), also known as Nasu-Hakola disease, is a recessively inherited disease characterized by a combination of psychotic symptoms rapidly progressing to presenile dementia and bone cysts restricted to wrists and ankles1,2,3. PLOSL has a global distribution, although most of the patients have been diagnosed in Finland4 and Japan, with an estimated population prevalence of 2×10−6 (ref. 2) in the Finns. We have previously identified a shared 153-kb ancestor haplotype in all Finnish disease alleles between markers D19S1175 and D19S608 on chromosome 19q13.1 (refs 5,6). Here we characterize the molecular defect in PLOSL by identifying one large deletion in all Finnish PLOSL alleles and another mutation in a Japanese patient, both representing loss-of-function mutations, in the gene encoding TYRO protein tyrosine kinase binding protein7 (TYROBP; formerly DAP12). TYROBP is a transmembrane protein that has been recognized as a key activating signal transduction element in natural killer (NK) cells8. On the plasma membrane of NK cells, TYROBP associates with activating receptors recognizing major histocompatibility complex (MHC) class I molecules7,9. No abnormalities in NK cell function were detected in PLOSL patients homozygous for a null allele of TYROBP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TYROBP and DAP10, located in opposite transcriptional orientation on chromosome 19q13.1, and identified PLOSL mutations in TYROBP.
Figure 2: Northern (a) and western (b) analysis of TYROBP and DAP10 transcripts and corresponding polypeptides of patients carrying PLOSLFin mutations.
Figure 3: Northern-blot analysis of TYROBP in multiple human tissues.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hakola, H.P.A. Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr. Scand. Suppl. 232, 1–173 (1972).

    CAS  PubMed  Google Scholar 

  2. Hakola, H.P.A. Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (membranous lipodystrophy). A neuropsychiatric follow-up study. (monograph 17) in Monographs of Psychiatria Fennica (eds Henriksson, M., Huttunen, M., Kuoppasalmi, K., Lindfors, O. & Lönnqvist, J.) 1–114 (Foundation for Psychiatric Research in Finland, Helsinki, 1990).

    Google Scholar 

  3. Verloes, A. et al. Nasu-Hakola syndrome: polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy and presenile dementia. J. Med. Genet. 34, 753–757 (1997).

    Article  CAS  Google Scholar 

  4. Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet. 8, 1913–1923 (1999).

    Article  CAS  Google Scholar 

  5. Pekkarinen, P. et al. Assignment of the locus for PLOSL, a frontal-lobe dementia with bone cysts, to 19q13. Am. J. Hum. Genet. 62, 362–372 (1998).

    Article  CAS  Google Scholar 

  6. Pekkarinen, P. et al. Fine-scale mapping of a novel dementia gene, PLOSL, by linkage disequilibrium. Genomics 54, 307–315 (1998).

    Article  CAS  Google Scholar 

  7. Lanier, L.L., Corliss, B.C., Wu, J., Leong, C. & Phillips, J.H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  Google Scholar 

  8. Colonna, M. Unmasking the killer's accompliance. Nature 391, 642–643 (1998).

    Article  CAS  Google Scholar 

  9. Campbell, K.S. & Colonna, M. DAP12: a key accessory protein for relaying signals by natural killer cell receptors. Int. J. Biochem. Cell Biol. 31, 631–636 (1999).

    Article  CAS  Google Scholar 

  10. Lenkkeri, U. et al. Structure of the human amyloid-precursor-like protein gene APLP1 at 19q13.1. Hum. Genet. 102, 192–196 (1998).

    Article  CAS  Google Scholar 

  11. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 258, 730–732 (1999).

    Article  Google Scholar 

  12. Chang, C.W. et al. KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J. Immunol. 163, 4651–4654 (1999).

    CAS  Google Scholar 

  13. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  Google Scholar 

  14. Nylander, P.-O., Drugge, U., Holmgren, G. & Adolfsson, R. Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLO-SL): a geneological study of Swedish families of probable Finnish background. Clin. Genet. 50, 353–357 (1996).

    Article  CAS  Google Scholar 

  15. McVicar, D.W. et al. DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J. Biol. Chem. 273, 32934–32942 (1998).

    Article  CAS  Google Scholar 

  16. Bakker, A.B.H., Baker, E., Sutherland, G.R., Phillips, J.H. & Lanier, L.L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl Acad. Sci. USA 96, 9792–9796 (1999).

    Article  CAS  Google Scholar 

  17. Lanier, L.L., Corliss, B., Wu, J. & Phillips, J.H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article  CAS  Google Scholar 

  18. Smith, K.M., Wu, J., Bakker, A.B., Phillips, J.H. & Lanier, L.L. Ly-49D and Ly-49H associates with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  Google Scholar 

  19. Edvardsen, P., Halvorsen, T.B. & Nesse, O. Lipomembranous osteodysplasia: a case report. Int. Orthop. 7, 99–103 (1983).

    Article  CAS  Google Scholar 

  20. Dietrich, J., Cella, M., Seiffert, M., Bühring, H.-J. & Colonna, M. Signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12 (2000).

    Article  CAS  Google Scholar 

  21. Abramsky, O. et al. A Dissection and Tissue Culture Manual of the Nervous System (eds Shahar, A., de Vellis, J., Vernadakis, A. & Haber, B.) 1–371 (Alan R. Liss, New York, 1989).

    Google Scholar 

  22. Rolstad, B. & Seaman, W.E. Natural killer cells and recognition of MHC class I molecules: new perspectives and challenges in immunology. Scand. J. Immunol. 47, 412–425 (1998).

    Article  CAS  Google Scholar 

  23. Cuadros, M.A. & Navascues, J. The origin and differentiation of microglial cells during development. Prog. Neurobiol. 56, 173–189 (1998).

    Article  CAS  Google Scholar 

  24. Heymann, D., Guicheux, J., Gouin, F., Passuti, N. & Daculsi, G. Cytokines, growth factors and osteoclasts. Cytokine 10, 155–168 (1998).

    Article  CAS  Google Scholar 

  25. Harris, N.L. Genotator: a workbench for sequence annotation. Genome Res. 7, 754–762 (1997).

    Article  CAS  Google Scholar 

  26. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, A Laboratory Manual (ed. Nolan, C) (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  28. Nasu, T., Tsukahara, Y. & Terayama, K. A lipid metabolic disease—“membranous lipodystrophy”—an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol. Jpn. 23, 539–558 (1973).

    CAS  PubMed  Google Scholar 

  29. Mäkelä, P., Järvi, O., Hakola, P. & Virtama, P. Radiologic bone changes of polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy. Skeletal Radiol. 8, 51–54 (1982).

    Article  Google Scholar 

  30. Kalimo, H., Sourander, P., Järvi, O. & Hakola, P. Vascular changes and blood-brain barrier damage in the pathogenesis of polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (membranous lipodystrophy). Acta Neurol. Scand. 89, 353–361 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Machinami for the tissue sample from the Japanese PLOSL patient. This work was supported by The Academy of Finland, Sigrid Jusélius Foundation, Hjelt Fond of the Pediatric Research Foundation and Helsinki University Central Hospital. Schering Plough Corporation supported DNAX Research Institute. The Sandler Family Supporting Foundation funded studies at University of California San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Peltonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paloneva, J., Kestilä, M., Wu, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25, 357–361 (2000). https://doi.org/10.1038/77153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing