Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesp2 initiates somite segmentation through the Notch signalling pathway

Abstract

The Notch-signalling pathway is important in establishing metameric pattern during somitogenesis. In mice, the lack of either of two molecules involved in the Notch-signalling pathway, Mesp2 or presenilin-1 (Ps1), results in contrasting phenotypes: caudalized versus rostralized vertebra. Here we adopt a genetic approach to analyse the molecular mechanism underlying the establishment of rostro-caudal polarity in somites. By focusing on the fact that expression of a Notch ligand, Dll1, is important for prefiguring somite identity, we found that Mesp2 initiates establishment of rostro-caudal polarity by controlling two Notch-signalling pathways. Initially, Mesp2 activates a Ps1-independent Notch-signalling cascade to suppress Dll1 expression and specify the rostral half of the somite. Ps1-mediated Notch-signalling is required to induce Dll1 expression in the caudal half of the somite. Therefore, Mesp2- and Ps1-dependent activation of Notch-signalling pathways might differentially regulate Dll1 expression, resulting in the establishment of the rostro-caudal polarity of somites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction of a lacZ reporter gene or activated Notch1 under the control of the Mesp2 promoter by homologous recombination (ac), lacZ expression in Mesp2-lacZ mouse embryos (dg) and a variation of Mesp2 expression domain in wild-type embryos (hk).
Figure 2: Expression of rostral somite markers at 11.5 d.p.c. Mesp2L/L and Psen1−/− embryos show distinct patterns of expression.
Figure 3: Schematic illustration of the expression pattern of Dll1 and segmentation of somites in the mouse embryo.
Figure 4: Expression patterns of caudal genes Dll1 and Uncx4.1 are correlated with skeletal morphology in various mutants.
Figure 5: Activated Notch1 alters the spatial pattern of Dll1 expression.
Figure 6: A hypothesis and a model for the regulation of Dll1 expression.
Figure 7: Both the Mesp2L/L and Psen1−/− mutants exhibit a reduced level of Notch signalling, and activated Notch1 in the Mesp2 locus activates Notch signalling.

Similar content being viewed by others

References

  1. Tam, P.P.L., Goldman, D., Camus, A. & Schoenwolf, G.C. Early events of somitogenesis in higher vertebrates: allocation of precursor cells during gastrulation and the organization of a meristic pattern in the paraxial mesoderm . Curr. Top. Dev. Biol. 47, 1– 32 (2000).

    CAS  PubMed  Google Scholar 

  2. Franco del Amo, F. et al. Expression of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development . Development 115, 737– 745 (1992).

    CAS  Google Scholar 

  3. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guénet, J.-L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  4. Dunwoodie, S.L., Henrique, D., Harrison, S.M. & Beddington, R.S.P. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065 –3076 (1997).

    CAS  PubMed  Google Scholar 

  5. Johnston, S.H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124 , 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  6. Conlon, R.A., Reaume, A.G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533– 1545 (1995).

    CAS  PubMed  Google Scholar 

  7. Swiatek, P.J., Lindsell, C.E., Franco del Amo, F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Hrabe de Angelis, M., McIntyre, J. II & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386, 717–721 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kusumi, K. et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genet. 19, 274–278 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394 , 374–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Evrard, Y.A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R.L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Oka, C. et al. Disruption of the mouse RBP-Jk gene results in early embryonic death. Development 121, 3291– 3301 (1995).

    CAS  PubMed  Google Scholar 

  13. Saga, Y., Hata, N., Koseki, H. & Taketo, M.M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. del Barco Barrantes, I. et al. Interaction between Notch signaling and Lunatic fringe during somite boundary formation in the mouse. Curr. Biol. 9, 470–480 (1999).

    Article  CAS  Google Scholar 

  15. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ye, Y., Lukinova, N. & Fortini, M.E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398 , 525–529 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Wong, P.C. et al. Presenilin 1 is required for Notch1 and Dll1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquie, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Neidhardt, L.M., Kispert, A. & Herrmann, B.G. A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Dev. Genes Evol. 207, 330–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein, R.S. & Kalcheim, C. Determination of epithelial half-somites in skeletal morphogenesis. Development 116, 441–445 ( 1992).

    CAS  PubMed  Google Scholar 

  22. Takebayashi, K., Akazawa, C., Nakanishi, S. & Kageyama, R. Structure and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-5. Identification of the neural precursor cell-specific promoter element. J. Biol. Chem. 270, 1342– 1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. de la Pompa, J.L. et al. Conservation of the Notch signaling pathway in mammalian neurogenesis . Development 124, 1139– 1148 (1997).

    CAS  PubMed  Google Scholar 

  24. Donoviel, D.B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801– 2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jen, W.-C., Wettstein, D., Turner, D., Chitnis, A. & Kintner, C. The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 124, 1169–1178 ( 1997).

    CAS  PubMed  Google Scholar 

  26. Jen, W.-C., Gawantka, V., Pollet, N., Niehrs, C. & Kintner, C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sparrow, D.B. et al. Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway . Development 125, 2041– 2051 (1998).

    CAS  PubMed  Google Scholar 

  28. Yagi, T. et al. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 214, 70– 76 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ishii, Y., Fukuda, K., Saiga, H., Matsushita, S. & Yasugi, S. Early specification of intestinal epithelium in the chicken embryo: a study on the localization and regulation of CdxA expression. Dev. Growth Differ. 39, 643– 653 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Conlon (Notch1 cDNA), A. Gossler (Dll1 cDNA), P. Gruss (Uncx4.1 cDNA), R. Kageyama (Hes5 cDNA) and E.M. De Robertis (Cer1 cDNA) for providing reagents; and W. Murai, M. Ikumi, S. Sinzawa, M. Uchida and S. Takeda for technical assistance. This work was supported in part by Grants in Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture in Japan and Special Coordination Funds for Promoting Science and Technology to Y.S., and grants from the Mochida Memorial Foundation for Medical and Pharmaceutical Research, Uehara Memorial Foundation and Ichiro Kanehara Foundation to H.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haruhiko Koseki or Yumiko Saga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, Y., Koizumi, Ki., Takagi, A. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway . Nat Genet 25, 390–396 (2000). https://doi.org/10.1038/78062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing