Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibody arrays for high-throughput screening of antibody–antigen interactions

Abstract

We have developed a novel technique for high-throughput screening of recombinant antibodies, based on the creation of antibody arrays. Our method uses robotic picking and high-density gridding of bacteria containing antibody genes followed by filter-based enzyme-linked immunosorbent assay (ELISA) screening to identify clones that express binding antibody fragments. By eliminating the need for liquid handling, we can thereby screen up to 18,342 different antibody clones at a time and, because the clones are arrayed from master stocks, the same antibodies can be double spotted and screened simultaneously against 15 different antigens. We have used our technique in several different applications, including isolating antibodies against impure proteins and complex antigens, where several rounds of phage display often fail. Our results indicate that antibody arrays can be used to identify differentially expressed proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody array screening after one round of phage selection using BSA.
Figure 2: Antibody array screening after one round of phage selection using a mixture of three unpurified recombinant bacterial lysates.
Figure 3: Western blot analysis of HeLa cells probed with scFv clones 2M15, 2G11, 8F20, 14H10, and 20M8 and Con (a non-binding scFv control).

Similar content being viewed by others

References

  1. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  Google Scholar 

  2. Griffiths, A.D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  Google Scholar 

  3. De Wildt, R.M.T. et al. Characterization of human variable domain antibody fragments against the U1 RNA-associated A protein, selected from a synthetic and a patient-derived combinatorial V gene library. Eur. J. Immunol. 26, 629–639 (1996).

    Article  CAS  Google Scholar 

  4. Griffiths, A.D. et al. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734 (1993).

    Article  CAS  Google Scholar 

  5. Sheets, M.D. et al. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162 (1998).

    Article  CAS  Google Scholar 

  6. De Haard, H.J. et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18218–18230 (1999).

    Article  CAS  Google Scholar 

  7. De Kruif, J., Terstappen, L., Boel, E. & Logtenberg, T. Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92, 3938–3942 (1995).

    Article  CAS  Google Scholar 

  8. Parsons, H.L. et al. Directing phage selections towards specific epitopes. Protein Eng. 9, 1043–1049 (1996).

    Article  CAS  Google Scholar 

  9. Hoogenboom, H.R. et al. Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur. J. Biochem. 260, 774–784 (1999).

    Article  CAS  Google Scholar 

  10. Noronha, E.J., Wang, X., Desai, S.A., Kageshita, T. & Ferrone, S. Limited diversity of human scFv fragments isolated by panning a synthetic phage-display scFv library with cultured human melanoma cells. J. Immunol. 161, 2968–2976 (1998).

    CAS  PubMed  Google Scholar 

  11. Young, R.A. & Davis, R.W. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80, 1194–1198 (1983).

    Article  CAS  Google Scholar 

  12. Mullinax, R.L. et al. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage lambda immunoexpression library. Proc. Natl. Acad. Sci. USA 87, 8095–8099 (1990).

    Article  CAS  Google Scholar 

  13. Huse, W.D. et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  Google Scholar 

  14. Watkins, J.D. et al. Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries. Anal. Biochem. 256, 169–177 (1998).

    Article  CAS  Google Scholar 

  15. Skerra, A., Dreher, M.L. & Winter, G. Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two-membrane system. Anal. Biochem. 196, 151–155 (1991).

    Article  CAS  Google Scholar 

  16. Rodenburg, C.M., Mernaugh, R., Bilbao, G. & Khazaeli, M.B. Production of a single chain anti-CEA antibody from the hybridoma cell line T84.66 using a modified colony-lift selection procedure to detect antigen-positive scFv bacterial clones. Hybridoma 17, 1–8 (1998).

    Article  CAS  Google Scholar 

  17. Clackson, T., Hoogenboom, H.R., Griffiths, A.D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  CAS  Google Scholar 

  18. Graus, Y.F. et al. Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J. Immunol. 158, 1919–1929 (1997).

    CAS  PubMed  Google Scholar 

  19. Cai, X. & Garen, A. Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541 (1995).

    Article  CAS  Google Scholar 

  20. Hoet, R.M.A. et al. Human monoclonal antibody fragments from combinatorial antibody libraries directed to the U1 snRNP associated U1C protein; epitope mapping, immunolocalization and V-gene usage. Mol. Immunol. 35, 1045–1055 (1998).

    Article  CAS  Google Scholar 

  21. Hawkins, R.E., Russell, S.J. & Winter, G. Selection of phage antibodies by binding affinity, mimicking affinity maturation. J.Mol.Biol. 226, 889–896 (1992).

    Article  CAS  Google Scholar 

  22. Marks, J.D. et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology 10, 779–783 (1992).

    CAS  PubMed  Google Scholar 

  23. Schier, R. et al. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43 (1996).

    Article  CAS  Google Scholar 

  24. Blackstock, W.P. & Weir, M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127 (1999).

    Article  CAS  Google Scholar 

  25. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  26. Vaughan, T.J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  Google Scholar 

  27. Dinh, Q. et al. High affinity antibodies against Lex and sialyl Lex from a phage display library. J. Immunol. 157, 732–738 (1996).

    CAS  PubMed  Google Scholar 

  28. Mao, S. et al. Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc. Natl. Acad. Sci. USA 96, 6953–6958 (1999).

    Article  CAS  Google Scholar 

  29. Holliger, P., Prospero, T. & Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448 (1993).

    Article  CAS  Google Scholar 

  30. Iliades, P., Kortt, A.A. & Hudson, P.J. Triabodies: single chain Fv fragments without a linker form trivalent trimers. FEBS Lett. 409, 437–441 (1997).

    Article  CAS  Google Scholar 

  31. Bobrow, M.N., Harris, T.D., Shaughnessy, K.J. & Litt, G.J. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125, 279–285 (1989).

    Article  CAS  Google Scholar 

  32. Osbourn, J.K., Derbyshire, E.J., Vaughan, T.J., Field, A.W. & Johnson, K.S. Pathfinder selection: in situ isolation of novel antibodies. Immunotechnology 3, 293–302 (1998).

    Article  CAS  Google Scholar 

  33. Bussow, K. et al. A method for global protein expression and antibody screening on high- density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008 (1998).

    Article  CAS  Google Scholar 

  34. Lueking, A. et al. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111 (1999).

    Article  CAS  Google Scholar 

  35. Hoffmann, A. & Roeder, R.G. Purification of his-tagged proteins in non-denaturing conditions suggests a convenient method for protein interaction studies. Nucleic Acids Res. 19, 6337–6338 (1991).

    Article  CAS  Google Scholar 

  36. Verheijen, R. et al. Screening for autoantibodies to the nucleolar U3- and Th(7- 2) ribonucleoproteins in patients sera using antisense riboprobes. J. Immunol. Methods 169, 173–182 (1994).

    Article  CAS  Google Scholar 

  37. Harlow, E. & Lane, D. Antibodies—a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 1988).

    Google Scholar 

  38. De Wildt, R.M.T., Hoet, R.M.A., van Venrooij, W.J., Tomlinson, I.M. & Winter, G. Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J. Mol. Biol. 285, 895–901 (1999).

    Article  CAS  Google Scholar 

  39. Kristensen, P. & Winter, G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold. Des. 3, 321–328 (1998).

    Article  CAS  Google Scholar 

  40. Friguet, B., Chaffotte, A.F., Djavadi Ohaniance, L. & Goldberg, M.E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77, 305–319 (1985).

    Article  CAS  Google Scholar 

  41. Nieba, L., Krebber, A. & Pluckthun, A. Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal. Biochem. 234, 155–165 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the RZPD Resource centre (Berlin, Germany) for providing clones from the human fetal brain cDNA library hEX1, and Lucy Holt for help during experimental work and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruud M. T. de Wildt or Ian M. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wildt, R., Mundy, C., Gorick, B. et al. Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat Biotechnol 18, 989–994 (2000). https://doi.org/10.1038/79494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing