Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells

Abstract

Human visual perception and many visual system neurons adapt to the luminance and contrast of the stimulus. Here we describe a form of contrast adaptation that occurs in the retina. This adaptation had a local scale smaller than the dendritic or receptive fields of single ganglion cells and was insensitive to pharmacological manipulation of amacrine cell function. These results implicate the bipolar cell pathway as a site of contrast adaptation. The time required for contrast adaptation varied with stimulus size, ranging from approximately 100 ms for the smallest stimuli, to seconds for stimuli the size of the receptive field. The differing scales and time courses of these effects suggest that multiple types of contrast adaptation are used in viewing natural scenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ganglion cell responses to abrupt changes in stimulus contrast.
Figure 2: The response of a ganglion cell to abrupt changes in contrast in the receptive field center versus receptive field surround.
Figure 3: The responses of ganglion cells, including ON and OFF cells, to contrast changes for stimuli confined to the receptive field center compared to stimuli confined to the receptive field surround. The adaptation index for the stimulus pairs shown in Fig. 2b and d is plotted (binwidth, 500 ms).
Figure 4: The response of two OFF ganglion cells to local changes in contrast confined to the receptive field center.
Figure 5: The responses of ganglion cells, including both ON and OFF types, to contrast changes for stimuli within the receptive field center.
Figure 6: Contrast adaptation in the presence of a glycine receptor antagonist, strychnine.
Figure 7: Contrast adaptation in the presence of picrotoxin, an antagonist of GABAA and GABAC receptors.

Similar content being viewed by others

References

  1. Shapley, R. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. Prog. Ret. Res. 3, 263–346 (1984).

    Article  Google Scholar 

  2. Shapley, R. & Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. Lond. 285, 275–298 (1978).

    Article  CAS  Google Scholar 

  3. Shapley, R. M. & Victor, J. D. Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. J. Physiol. Lond. 290, 141–161 (1979).

    Article  CAS  Google Scholar 

  4. Shapley, R. M. & Victor, J. D. The effect of contrast on the non-linear response of the Y cell. J. Physiol. Lond. 302, 535–547 (1980).

    Article  CAS  Google Scholar 

  5. Shapley, R. M. & Victor, J. D. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J. Physiol. Lond. 318, 161–179 (1981).

    Article  CAS  Google Scholar 

  6. Benardete, E. A., Kaplan, E. & Knight, B. W. Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis. Neurosci. 8, 483–486 (1992).

    Article  CAS  Google Scholar 

  7. Enroth-Cugell, C. & Jakiela, H. G. Suppression of cat retinal ganglion cell responses by moving patterns. J. Physiol. Lond. 302, 49–72 (1980).

    Article  CAS  Google Scholar 

  8. Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    Article  CAS  Google Scholar 

  9. Shapley, R. Retinal physiology: adapting to the changing scene. Curr. Biol. 7, R421–423 (1997).

    Article  CAS  Google Scholar 

  10. Albrecht, D. G., Farrar, S. B. & Hamilton, D. B. Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. J. Physiol. Lond. 347, 713–739 (1984).

    Article  CAS  Google Scholar 

  11. Ohzawa, I., Sclar, G. & Freeman, R. D. Contrast gain control in the cat's visual system. J. Neurophysiol. 54, 651–667 (1985).

    Article  CAS  Google Scholar 

  12. Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).

    Article  CAS  Google Scholar 

  13. Maddess, T., McCourt, M. E., Blakeslee, B. & Cunningham, R. B. Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biol. Cybern. 59, 229–236 (1988).

    Article  CAS  Google Scholar 

  14. Vaney, D. I. The mosaic of amacrine cells in the mammalian retina. Prog. Ret. Res. 9, 49–100 (1991).

    Article  Google Scholar 

  15. MacNeil, M. A. & Masland, R. H. Extreme diversity among amacrine cells: implications for function. Neuron 20, 971–982 (1998).

    Article  CAS  Google Scholar 

  16. MacNeil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413, 305–326 (1999).

    Article  CAS  Google Scholar 

  17. Koontz, M. A., Hendrickson, L. E., Brace, S. T. & Hendrickson, A. E. Immunocytochemical localization of GABA and glycine in amacrine and displaced amacrine cells of macaque monkey retina. Vision Res. 33, 2617–2628 (1993).

    Article  CAS  Google Scholar 

  18. Kalloniatis, M., Marc, R. E. & Murry, R. F. Amino acid signatures in the primate retina. J. Neurosci. 16, 6807–6829 (1996).

    Article  CAS  Google Scholar 

  19. Crook, D. K. & Pow, D. V. Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: a comparison with the ontogeny of a functional GABA transport system in retinal neurons. Vis. Neurosci. 14, 751–763 (1997).

    Article  CAS  Google Scholar 

  20. Ehinger, B., Ottersen, O. P., Storm-Mathisen, J. & Dowling, J. E. Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc. Natl. Acad. Sci. USA 85, 8321–8325 (1988).

    Article  CAS  Google Scholar 

  21. Lukasiewicz, P. D. & Wong, R. O. L. GABAC receptors on ferret retinal bipolar cells: A diversity of subtypes in mammals? Vis. Neurosci. 14, 989–994 (1997).

    Article  CAS  Google Scholar 

  22. Mills, S. L. & Massey, S. C. Distribution and coverage of A- and B-type horizontal cells stained with Neurobiotin in the rabbit retina. Vis. Neurosci. 11, 549–560 (1994).

    Article  CAS  Google Scholar 

  23. Peters, B. N. & Masland, R. H. Responses to light of starburst amacrine cells. J. Neurophysiol. 75, 469–480 (1996).

    Article  CAS  Google Scholar 

  24. Taylor, W. R. & Wässle, H. Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur. J. Neurosci. 7, 2308–2321 (1995).

    Article  CAS  Google Scholar 

  25. Stafford, D. K. & Dacey, D. M. Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina. Vis. Neurosci. 14, 507–522 (1997).

    Article  CAS  Google Scholar 

  26. Taylor, W. R. Response properties of long-range axon-bearing amacrine cells in the dark-adapted rabbit retina. Vis. Neurosci. 13, 599–604 (1996).

    Article  CAS  Google Scholar 

  27. Taylor, W. R. TTX attenuates surround inhibition in rabbit retinal ganglion cells. Vis. Neurosci. 16, 285–290 (1999).

    Article  CAS  Google Scholar 

  28. Mills, S. L. & Massey, S. C. Morphology of bipolar cells labeled by DAPI in the rabbit retina. J. Comp. Neurol. 321, 133–149 (1992).

    Article  CAS  Google Scholar 

  29. Massey, S. C. & Mills, S. L. A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J. Comp. Neurol. 366, 15–33 (1996).

    Article  CAS  Google Scholar 

  30. Brown, S. P. & Masland, R. H. Costratification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina. J. Comp. Neurol. 408, 97–106 (1999).

    Article  CAS  Google Scholar 

  31. Sterling, P. in The Synaptic Organization of the Brain (ed. Shepherd, G.) 205–253 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  32. Perlman, I. & Normann, R. A. Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Prog. Ret. Eye Res. 17, 523–563 (1998).

    Article  CAS  Google Scholar 

  33. Witkovsky, P. & Dearry, A. Functional roles of dopamine in the vertebrate retina. Prog. Ret. Res. 11, 247–292 (1991).

    Article  CAS  Google Scholar 

  34. Cleland, B. G. & Freeman, A. W. Visual adaptation is highly localized in the cat's retina. J. Physiol. Lond. 404, 591–611 (1988).

    Article  CAS  Google Scholar 

  35. Yang, G. & Masland, R. H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci. 14, 5267–5280 (1994).

    Article  CAS  Google Scholar 

  36. He, S. & Masland, R. H. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 389, 378–382 (1997).

    Article  CAS  Google Scholar 

  37. Brown, S. P., He, S. & Masland, R. H. Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 27, 371–383 (2000).

    Article  CAS  Google Scholar 

  38. Levick, W. R. Another tungsten microelectrode. Med. Biol. Eng. 10, 510–515 (1972).

    Article  CAS  Google Scholar 

  39. Zhou, Z. J. & Fain, G. L. Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices. J. Neurosci. 15, 5334–5345 (1995).

    Article  CAS  Google Scholar 

  40. Massey, S. C., Linn, D. M., Kittila, C. A. & Mirza, W. Contributions of GABAA receptors and GABAC receptors to acetylcholine release and directional selectivity in the rabbit retina. Vis. Neurosci. 14, 939–948 (1997).

    Article  CAS  Google Scholar 

  41. Park, S. K. & Miller, K. W. Random number generators: good ones are hard to find. Communications ACM 31, 1192–1201 (1988).

    Article  Google Scholar 

  42. Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article  CAS  Google Scholar 

  43. De Boer, E. & Kuyper, P. Trigger correlation. IEEE Trans. Biomed. Eng. 15, 169–179 (1968).

    Article  CAS  Google Scholar 

  44. DeVries, S. H. & Baylor, D. A. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78, 2048–2060 (1997).

    Article  CAS  Google Scholar 

  45. Levick, W. R. Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina. J. Physiol. Lond. 188, 285–307 (1967).

    Article  CAS  Google Scholar 

  46. Buhl, E. H. & Peichl, L. Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. J. Comp. Neurol. 253, 163–174 (1986).

    Article  CAS  Google Scholar 

  47. Peichl, L., Buhl, E. H. & Boycott, B. B. Alpha ganglion cells in the rabbit retina. J. Comp. Neurol. 263, 25–41 (1987).

    Article  CAS  Google Scholar 

  48. Amthor, F. R., Takahashi, E. S. & Oyster, C. W. Morphologies of rabbit retinal ganglion cells with complex receptive fields. J. Comp. Neurol. 280, 97–121 (1989).

    Article  CAS  Google Scholar 

  49. Amthor, F. R., Takahashi, E. S. & Oyster, C. W. Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J. Comp. Neurol. 280, 72–96 (1989).

    Article  CAS  Google Scholar 

  50. He, S. & Masland, R. H. ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation. Vis. Neurosci. 15, 369–375 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Rockhill for technical assistance. S.P.B. was supported by a Howard Hughes Medical Institute Predoctoral Fellowship. R.H.M. is a Senior Investigator of Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Masland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S., Masland, R. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 4, 44–51 (2001). https://doi.org/10.1038/82888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing