Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic coincidence detection of EPSPs and action potentials

Abstract

We describe a mechanism for coincidence detection mediated by the interaction between backpropagating action potentials and EPSPs in neocortical pyramidal neurons. At distal dendritic locations, appropriately timed EPSPs or oscillations could increase the amplitude of backpropagating action potentials by three- to fourfold. This amplification was greatest when action potentials occurred at the peak of EPSPs or dendritic oscillations and could lead to somatic burst firing. The increase in amplitude required sodium channel activation but not potassium channel inactivation. The temporal characteristics of this amplification are similar to those required for changes in synaptic strength, suggesting that this mechanism may be involved in the induction of synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplification of backpropagating action potentials by EPSPs.
Figure 2: Effect of amplification of backpropagating action potentials on the soma.
Figure 3: Effect of EPSP timing and amplitude on action potential amplification.
Figure 4: Modulation of action potential amplification by dendritic membrane potential.
Figure 5: Involvement of dendritic voltage-activated sodium channels in action potential amplification.
Figure 6: Testing the involvement of potassium channels in action potential amplification.
Figure 7: Effect of EPSPs on activation of potassium channels by backpropagating action potentials.
Figure 8: Modeling action potential amplification by EPSPs.
Figure 9: Specificity and spatial localization of action potential amplification.

Similar content being viewed by others

References

  1. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  2. Bliss, T. V. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  3. Bliss, T. V. & Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 357–374 (1973).

    Article  CAS  Google Scholar 

  4. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian central nervous system. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  Google Scholar 

  5. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  6. Linden, D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666 (1999).

    Article  CAS  Google Scholar 

  7. Sourdet, V. & Debanne, D. The role of dendritic filtering in associative long-term synaptic plasticity. Learn. Mem. 6, 422–447 (1999).

    Article  CAS  Google Scholar 

  8. Paulsen, O. & Sejnowski, T. J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol. 10, 172–179 (2000).

    Article  CAS  Google Scholar 

  9. Huerta, P. T. & Lisman, J. E. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364, 723–725 (1993).

    Article  CAS  Google Scholar 

  10. Huerta, P. T. & Lisman, J. E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063 (1995).

    Article  CAS  Google Scholar 

  11. Whittington, M. A., Traub, R. D., Faulkner, H. J., Stanford, I. M. & Jefferys, J. G. R. Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA 94, 12198–12203 (1997).

    Article  CAS  Google Scholar 

  12. Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).

    Article  CAS  Google Scholar 

  13. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  14. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    Article  CAS  Google Scholar 

  15. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  16. Migliore, M., Hoffman, D. A., Magee, J. C. & Johnston, D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7, 5–15 (1999).

    Article  CAS  Google Scholar 

  17. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  Google Scholar 

  18. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

  19. Vetter, P., Roth, A. & Häusser, M. Action potential propagation in dendrites depends on dendritic morphology. J. Neurophysiol. (in press).

  20. Johnston, D., Magee, J. C., Colbert, C. M. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  Google Scholar 

  21. Bekkers, J. M. Properties of voltage-gated potassium channels in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. (Lond.) 525, 593–609 (2000).

    Article  CAS  Google Scholar 

  22. Korngreen, A. & Sakmann, B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol. (Lond.) 525, 621–639 (2000).

    Article  CAS  Google Scholar 

  23. Bekkers, J. M. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. (Lond.) 525, 611–620 (2000).

    Article  CAS  Google Scholar 

  24. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  25. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).

    Article  CAS  Google Scholar 

  26. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 605–616 (1997).

    Article  CAS  Google Scholar 

  27. Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  28. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  29. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  30. Feldman, D. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  Google Scholar 

  31. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  32. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  Google Scholar 

  33. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984).

    Article  CAS  Google Scholar 

  34. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995).

    Article  CAS  Google Scholar 

  35. Neville, K. R. & Lytton, W. W. Potentiation of Ca2+ influx through NMDA channels by action potentials: a computer model. Neuroreport 10, 3711–3716 (1999).

    Article  CAS  Google Scholar 

  36. Yuste, R., Majewska, A., Cash, S. S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    Article  CAS  Google Scholar 

  37. Schiller, J., Schiller, Y. & Clapham, D. E. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat. Neurosci. 1, 114–118 (1998).

    Article  CAS  Google Scholar 

  38. Koester, H. J. & Sakmann, B. Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc. Natl. Acad. Sci. USA 95, 9596–9601 (1998).

    Article  CAS  Google Scholar 

  39. Nakamura, T., Barbara, J. G., Nakamura, K. & Ross, W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999).

    Article  CAS  Google Scholar 

  40. Wang, S. S.-H., Denk, W. & Häusser, M. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3, 1266–1273 (2000).

    Article  CAS  Google Scholar 

  41. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  Google Scholar 

  42. Stuart, G. J., Dodt, H.-U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurones in brain slices using infrared video microscopy. Pflügers Archiv. 423, 511–518 (1993).

    Article  CAS  Google Scholar 

  43. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comp. 9, 1179–1209 (1997).

    Article  CAS  Google Scholar 

  44. Mainen, Z. F., Joerges, J., Huguenard, J. R. & Sejnowski, T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).

    Article  CAS  Google Scholar 

  45. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Bekkers for help with the nucleated patch experiments, Stephen Williams, Angus Silver, Mark Farrant and Beverley Clark for their comments on earlier versions of the manuscript, and The Wellcome Trust for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg J. Stuart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart, G., Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4, 63–71 (2001). https://doi.org/10.1038/82910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing