Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

Abstract

Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-d-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the model and its behavior.
Figure 2: Quantitation of model temporal tuning and main parameter dependence.
Figure 3: Temporal frequency tuning of the model with different levels of NMDA in the feedback excitatory connections.

Similar content being viewed by others

References

  1. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

    Article  CAS  Google Scholar 

  2. Holub, R. A. & Morton-Gibson, M. Response of visual cortical neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. J. Neurophysiol. 46, 1244–1259 (1981).

    Article  CAS  Google Scholar 

  3. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. (Lond.) 283, 101–120 (1978).

    Article  CAS  Google Scholar 

  4. Saul, A. B. & Humphrey, A. L. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8, 365–372 (1992).

    Article  CAS  Google Scholar 

  5. Ikeda, H. & Wright, M. J. Spatial and temporal properties of sustained and transient neurones in area 17 of the cat's visual cortex. Exp. Brain Res. 22, 363–383 (1975).

    Google Scholar 

  6. Hawken, M. J., Shapley, R. M. & Grosof, D. H. Temporal-frequency selectivity in monkey visual cortex. Vis. Neurosci. 13, 477–492 (1996).

    Article  CAS  Google Scholar 

  7. O'Keefe, L. P., Levitt, J. B., Kiper, D. C., Shapley, R. M. & Movshon, J. A. Functional organization of owl monkey lateral geniculate nucleus and visual cortex. J. Neurophysiol. 80, 594–609 (1998).

    Article  CAS  Google Scholar 

  8. Derrington, A. M. & Fuchs, A. F. Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. J. Physiol. (Lond.) 293, 347–364 (1979).

    Article  CAS  Google Scholar 

  9. Hamamoto, J., Cheng, H., Yoshida, K., Smith, E. L. & Chino, Y. M. Transfer characteristics of lateral geniculate nucleus X-neurons in the cat: effects of temporal frequency. Exp. Brain Res. 98, 191–199 (1994).

  10. Saul, A. B. & Humphrey, A. L. Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J. Neurophysiol. 64, 206–224 (1990).

    Article  CAS  Google Scholar 

  11. Sclar, G. Expression of “retinal” contrast gain control by neurons of the cat's lateral geniculate nucleus. Exp. Brain Res. 66, 589–596 (1987).

    Article  CAS  Google Scholar 

  12. Creutzfeldt, O., Hellweg, F. C. & Schreiner, C. Thalamocortical transformation of responses to complex auditory stimuli. Exp. Brain Res. 39, 87–104 (1980).

    Article  CAS  Google Scholar 

  13. Simons, D. J. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635 (1985).

    Article  CAS  Google Scholar 

  14. Troyer, T. W., Krukowski, A. E., Priebe, N. J. & Miller, K. D. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998).

    Article  CAS  Google Scholar 

  15. Ferster, D. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J. Neurosci. 8, 1172–1180 (1988).

    Article  CAS  Google Scholar 

  16. Hirsch, J. A., Alonso, J. M., Reid, R. C. & Martinez, L. M. Synaptic integration in striate cortical simple cells. J. Neurosci. 18, 9517–9528 (1998).

    Article  CAS  Google Scholar 

  17. Ferster, D. & Jagadeesh, B. EPSP–IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274 (1992).

    Article  CAS  Google Scholar 

  18. Maex, R. & Orban, G. A. A model circuit for cortical temporal low-pass filtering. Neural Comput. 4, 932–945 (1992).

    Article  Google Scholar 

  19. Suarez, H., Koch, C. & Douglas, R. Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15, 6700–6719 (1995).

    Article  CAS  Google Scholar 

  20. Gil, Z. & Amitai, Y. Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. J. Neurophysiol. 76, 2547–2554 (1996).

    Article  CAS  Google Scholar 

  21. Crair, M. C. & Malenka, R. C. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    Article  CAS  Google Scholar 

  22. Fox, K., Sato, H. & Daw, N. The location and function of NMDA receptors in cat and kitten visual cortex. J. Neurosci. 9, 2443–2454 (1989).

    Article  CAS  Google Scholar 

  23. Armstrong-James, M., Welker, E. & Callahan, C. A. The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex. J. Neurosci. 13, 2149–2160 (1993).

    Article  CAS  Google Scholar 

  24. Salt, T. E., Meier, C. L., Seno, N., Krucker, T. & Herrling, P. L. Thalamocortical and corticocortical excitatory postsynaptic potentials mediated by excitatory amino acid receptors in the cat motor cortex in vivo. Neuroscience 64, 433–442 (1995).

    Article  CAS  Google Scholar 

  25. Kasamatsu, T. et al. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation. Neuroscience 82, 687–700 (1998).

    Article  CAS  Google Scholar 

  26. Miller, K. D., Chapman, B. & Stryker, M. P. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 86, 5183–5187 (1989).

    Article  CAS  Google Scholar 

  27. Hagihara, K., Tsumoto, T., Sato, H. & Hata, Y. Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex. Exp. Brain Res. 69, 407–416 (1988).

    Article  CAS  Google Scholar 

  28. Ling, D. S. & Benardo, L. S. Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. J. Neurophysiol. 74, 2329–2335 (1995).

    Article  CAS  Google Scholar 

  29. Angulo, M. C., Rossier, J. & Audinat, E. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J. Neurophysiol. 82, 1295–1302 (1999).

    Article  CAS  Google Scholar 

  30. Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).

    Article  CAS  Google Scholar 

  31. Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).

    Article  CAS  Google Scholar 

  32. Gary-Bobo, E., Przybyslawski, J. & Saillour, P. Experience-dependent maturation of the spatial and temporal characteristics of the cell receptive fields in the kitten visual cortex. Neurosci. Lett. 189, 147–150 (1995).

    Article  CAS  Google Scholar 

  33. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  34. Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. (Lond.) 521, 169–190 (1999).

    Article  CAS  Google Scholar 

  35. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  Google Scholar 

  36. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  Google Scholar 

  37. Catalano, S. M., Chang, C. K. & Shatz, C. J. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex. J. Neurosci. 17, 8376–8390 (1997).

    Article  CAS  Google Scholar 

  38. Thomson, A. M. & Destexhe, A. Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92, 1193–1215 (1999).

    Article  CAS  Google Scholar 

  39. Douglas, R. J. & Martin, K. A. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  40. Allison, J. D., Kabara, J. F., Snider, R. K., Casagrande, V. A. & Bonds, A. B. GABAB-receptor-mediated inhibition reduces the orientation selectivity of the sustained response of striate cortical neurons in cats. Vis. Neurosci. 13, 559–566 (1996).

    Article  CAS  Google Scholar 

  41. Cai, D., DeAngelis, G. C. & Freeman, R. D. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78, 1045–1061 (1997).

    Article  CAS  Google Scholar 

  42. Quinlan, E. M., Olstein, D. H. & Bear, M. F. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl. Acad. Sci. USA 96, 12876–12880 (1999).

    Article  CAS  Google Scholar 

  43. Fox, K., Daw, N., Sato, H. & Czepita, D. The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex. J. Neurosci. 12, 2672–2684 (1992).

    Article  CAS  Google Scholar 

  44. Czepita, D., Reid, S. N. & Daw, N. W. Effect of longer periods of dark rearing on NMDA receptors in cat visual cortex. J. Neurophysiol. 72, 1220–1226 (1994).

    Article  CAS  Google Scholar 

  45. Tang, Y. P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  Google Scholar 

  46. Swadlow, H. A. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J. Neurophysiol. 62, 288–308 (1989).

    Article  CAS  Google Scholar 

  47. Swadlow, H. A. Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties. J. Neurophysiol. 66, 1392–1409 (1991).

    Article  CAS  Google Scholar 

  48. Swadlow, H. A. Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J. Neurophysiol. 71, 437–453 (1994).

    Article  CAS  Google Scholar 

  49. Pinto, D. J., Brumberg, J. C. & Simons, D. J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  Google Scholar 

  50. Jahr, C. E. & Stevens, C. E. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Troyer for discussions and L. Stone for comments on the manuscript. Supported by a Howard Hughes Medical Institute predoctoral fellowship (A.E.K.) and by RO1EY001 from the National Eye Institute (K.D.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton E. Krukowski or Kenneth D. Miller.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krukowski, A., Miller, K. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning. Nat Neurosci 4, 424–430 (2001). https://doi.org/10.1038/86084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing