Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptotic cells overexpress vinculin and induce vinculin-specific cytotoxic T-cell cross-priming

Abstract

Here we show that apoptotic cells overexpress vinculin and are ingested by dendritic cells, which subsequently cross-prime vinculin-specific cytotoxic T lymphocytes (CTLs). Successful cross-priming requires that the apoptotic cells provide maturation signals to dendritic cells through CD40–CD40 ligand (CD40L) interactions. If apoptotic cells are CD40L, the help of a third T cell is needed for priming, indicating a regulatory role for apoptotic cells in determining priming or tolerance. Vinculin-specific CTL priming is also related to apoptosis in vivo, given that in HIV-seropositive individuals, the frequency of specific CTLs depends on the proportion of peripheral CD40L+ apoptotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vinculin expression by apoptotic H9 T cells.
Figure 2: Immature dendritic cells phagocytose apoptotic cells and mature following exposure to CD40L+ apoptotic cells.
Figure 3: Cross-priming of vinculin-specific CD8+ T cell responses in vitro by dendritic cells (DC) that have captured and processed vinculin expressing CD40L+ apoptotic cells (AC).
Figure 4: Correlation between the frequency of vinculin-specific CTLs, viral load and number of peripheral apoptotic cells in HIV-infected patients, during anti-retroviral therapy.
Figure 5: The magnitude of vinculin-specific CTL responses is related directly to the levels of circulating CD40L+ apoptotic cells and inversely to the CD4+ T-cell numbers in HIV-infected patients.

Similar content being viewed by others

References

  1. Bevan, M.J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Albert, M.L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Heath, W.R. & Carbone, F.R. Cytotoxic T lymphocyte activation by cross-priming. Curr. Opin. Immunol. 11, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carbone, F.R., Kurts, C., Bennett, S.R., Miller, J.F. & Heath, W.R. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19, 368–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. & Balsano, F. Selective killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous antigen-specific T lymphocytes. Nature 345, 258–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Rock, K.L. A new foreign policy: MHC class I molecules monitor the outside world. Immunol. Today 17, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 15, 821–850 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Yewdell, J.W., Norbury, C.C. & Bennink, J.R. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: Implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol. 73, 1–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Regnault, A. et al. Fc-γ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castellino, F. et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med. 191, 1957–1964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Sallusto, F., & Lanzavecchia, A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J. Exp. Med. 189, 611–614 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. den Haan, J.M.M., Lehar, S.M., & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1695 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reid, S.D., Penna, G., & Adorini, L. The control of T cell responses by dendritic cell subsets. Curr. Opin. Immunol. 12, 114–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ronchetti, A. et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. J. Immunol. 163, 130–136 (1999).

    CAS  PubMed  Google Scholar 

  19. Sauter, B. et al. Consequences of cell death. Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steinman, R.M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Restifo, N.P. Building better vaccines: how apoptotic cells death can induce inflammation and activate innate and adaptive immunity. Curr. Opin. Immunol. 12, 597–603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med. 6, 1348–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. di Marzo Veronese, F. et al. Autoreactive cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected subjects. J. Exp. Med. 183, 2509–2516 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Sercarz, E.E. et al. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 11, 729–766 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Barnaba, V. Viruses, hidden self-epitopes and autoimmunity. Immunol. Rev. 152, 47–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Pantaleo, G. & Fauci, A.S. New concepts in the immunopathogenesis of HIV infection. Annu. Rev. Immunol. 13, 487–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Cutrona, G. et al. Expression of CD10 by human T cells that undergo apoptosis both in vitro and in vivo. Blood 94, 3067–3076 (1999).

    CAS  PubMed  Google Scholar 

  28. Lane, P. et al. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur. J. Immunol. 22, 2573–2578 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Scognamiglio, P. et al. Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors. J. Immunol. 162, 6681–6689 (1999).

    CAS  PubMed  Google Scholar 

  30. Cerundolo, V. et al. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J. Immunol. 27, 336–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Finkel, T.H. et al. Apoptosis occurs predominantly in bystander cells and not in productively cells of HIV- and SIV-infected lympho nodes. Nature Med. 1, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Muro Cacho, C.A., Pantaleo G. & Fauci A.S. Analysis of apoptosis of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J. Immunol. 154, 5555–5566 (1995)

    CAS  PubMed  Google Scholar 

  33. Badley, A. D. et al. In vivo analysis of Fas/FasL interactions in HIV-infected patients. J. Clin. Invest. 102, 79–87 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosen, A., Casciola-Rosen, L. & Ahearn, J. Novel packages of viral and self-antigens are generated during apoptosis. J. Exp. Med. 181, 1557–1561 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Mevorach, D., Zhou, J.L., Song, X. & Elkon, K.B. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188, 387–392 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Carbone, E. et al. A new mechanism of NK cell cytotoxicity activation: the CD40–CD40 ligand interaction. J. Exp. Med. 185, 2053–2060 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bennett, S.R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R. & Melief, C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Prezzi, C. et al. Virus-specific CD8+ T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection. Eur. J. Immunol. 31, 894–906 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Dunbar, P.R. et al. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr. Biol 8, 413–416 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Di Rosa for discussions and critical reading of the manuscript and C. Mastroianni for providing us the HIV-infected patients. This work was supported by Ministero della Sanità-Istituto Superiore di Sanità (Progetti AIDS 1998 to V.B. and M.F., and Epatite Virale 1997 to V.B.).; Ministero dell'Università e della Ricerca Scientifica e Tecnologica 40% 1997–1998 to V.B.; Progetto Associazione Italiana Sclerosi Multipla (AISM) 1997–1998 to V.B.; Progetto Finalizzato CNR 'Biotecnologie' to V.B.; European Community Contract No. BMH4-CT98-3703 to V.B.; and Associazione Italiana per la Ricerca sul Cancro (AIRC) 1999 to M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Barnaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Propato, A., Cutrona, G., Francavilla, V. et al. Apoptotic cells overexpress vinculin and induce vinculin-specific cytotoxic T-cell cross-priming. Nat Med 7, 807–813 (2001). https://doi.org/10.1038/89930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing