Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The integrative roles of chemokines at the maternal–fetal interface in early pregnancy

Abstract

Embryos express paternal antigens that are foreign to the mother, but the mother provides a special immune milieu at the fetal–maternal interface to permit rather than reject the embryo growth in the uterus until parturition by establishing precise crosstalk between the mother and the fetus. There are unanswered questions in the maintenance of pregnancy, including the poorly understood phenomenon of maternal tolerance to the allogeneic conceptus, and the remarkable biological roles of placental trophoblasts that invade the uterine wall. Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. It is increasingly evident that the gestational uterine microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the maternal–fetal interface and regulate multiple events that are closely associated with normal pregnancy. Here, we review the expression and function of chemokines and their receptors at the maternal–fetal interface, with a special focus on chemokine as a key component in trophoblast invasiveness and placental angiogenesis, recruitment and instruction of immune cells so as to form a fetus-supporting milieu during pregnancy. The chemokine network is also involved in pregnancy complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

    CAS  PubMed  Google Scholar 

  2. Johrer K, Pleyer L, Olivier A, Maizner E, Zelle-Rieser C, Greil R . Tumour-immune cell interactions modulated by chemokines. Expert Opin Biol Ther 2008; 8: 269–290.

    PubMed  Google Scholar 

  3. Carvalho-Gaspar M, Billing JS, Spriewald BM, Wood KJ . Chemokine gene expression during allograft rejection: comparison of two quantitative PCR techniques. J Immunol Methods 2005; 301: 41–52.

    CAS  PubMed  Google Scholar 

  4. Nomiyama H, Hieshima K, Osada N, Kato-Unoki Y, Otsuka-Ono K, Takegawa S et al. Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. BMC Genomics 2008; 9: 222.

    PubMed  PubMed Central  Google Scholar 

  5. Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP . CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 593–609.

    CAS  PubMed  Google Scholar 

  6. Britschgi MR, Favre S, Luther SA . CCL21 is sufficient to mediate DC migration, maturation and function in the absence of CCL19. Eur J Immunol 2010; 40: 1266–1271.

    CAS  PubMed  Google Scholar 

  7. Shang L, Fukata M, Thirunarayanan N, Martin AP, Arnaboldi P, Maussang D et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 2008; 135: 529–538.

    CAS  PubMed  Google Scholar 

  8. Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J, Ueha S et al. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J Exp Med 2011; 208: 1605–1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T et al. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 2009; 106: 3414–3419.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011; 475: 226–230.

    CAS  PubMed  Google Scholar 

  11. Seung E, Cho JL, Sparwasser T, Medoff BD, Luster AD . Inhibiting CXCR3-dependent CD8+ T cell trafficking enhances tolerance induction in a mouse model of lung rejection. J Immunol 2011; 186: 6830–6838.

    CAS  PubMed  Google Scholar 

  12. Borroni EM, Bonecchi R, Buracchi C, Savino B, Mantovani A, Locati M . Chemokine decoy receptors: new players in reproductive immunology. Immunol Invest 2008; 37: 483–497.

    CAS  PubMed  Google Scholar 

  13. Chew AL, Tan WY, Khoo BY . Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: a research perspective. Biomed Rep 2013; 1: 185–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wessels JM, Linton NF, van den Heuvel MJ, Cnossen SA, Edwards AK, Croy BA et al. Expression of chemokine decoy receptors and their ligands at the porcine maternal–fetal interface. Immunol Cell Biol 2011; 89: 304–313.

    CAS  PubMed  Google Scholar 

  15. Wu X, Li DJ, Yuan MM, Zhu Y, Wang MY . The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells. Biol Reprod 2004; 70: 1877–1885.

    CAS  PubMed  Google Scholar 

  16. He YY, Du MR, Guo PF, He XJ, Zhou WH, Zhu XY et al. Regulation of C–C motif chemokine ligand 2 and its receptor in human decidual stromal cells by pregnancy-associated hormones in early gestation. Hum Reprod 2007; 22: 2733–2742.

    CAS  PubMed  Google Scholar 

  17. Huang Y, Zhu XY, Du MR, Wu X, Wang MY, Li DJ . Chemokine CXCL16, a scavenger receptor, induces proliferation and invasion of first-trimester human trophoblast cells in an autocrine manner. Hum Reprod 2006; 21: 1083–1091.

    CAS  PubMed  Google Scholar 

  18. Li H, Huang YH, Li MQ, Meng YH, Chen X et al. Trophoblasts-derived chemokine CCL24 promotes the proliferation, growth and apoptosis of decidual stromal cells in human early pregnancy. Int J Clin Exp Pathol 2013; 6: 1028–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuang H, Chen Q, Zhang Y, Zhang L, Peng H, Ning L et al. The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity. Endocrinology 2009; 150: 5596–5605.

    CAS  PubMed  Google Scholar 

  20. Douglas GC, Thirkill TL . Chemokine receptor expression by human syncytiotrophoblast—a review. Placenta 2001; 22( Suppl A): S24–S28.

    PubMed  Google Scholar 

  21. Fujiwara H, Higuchi T, Sato Y, Nishioka Y, Zeng BX, Yoshioka S et al. Regulation of human extravillous trophoblast function by membrane-bound peptidases. Biochim Biophys Acta 2005; 1751: 26–32.

    CAS  PubMed  Google Scholar 

  22. Red-Horse K, Drake PM, Fisher SJ . Human pregnancy: the role of chemokine networks at the fetal–maternal interface. Expert Rev Mol Med 2004; 6: 1–14.

    PubMed  Google Scholar 

  23. Schanz A, Baston-Bust D, Krussel JS, Heiss C, Janni W, Hess AP . CXCR7 and syndecan-4 are potential receptors for CXCL12 in human cytotrophoblasts. J Reprod Immunol 2011; 89: 18–25.

    CAS  PubMed  Google Scholar 

  24. Drake PM, Red-Horse K, Fisher SJ . Reciprocal chemokine receptor and ligand expression in the human placenta: implications for cytotrophoblast differentiation. Dev Dyn 2004; 229: 877–885.

    CAS  PubMed  Google Scholar 

  25. Red-Horse K, Drake PM, Gunn MD, Fisher SJ . Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles. Am J Pathol 2001; 159: 2199–2213.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Drake PM, Red-Horse K, Fisher SJ . Chemokine expression and function at the human maternal–fetal interface. Rev Endocr Metab Disord 2002; 3: 159–165.

    CAS  PubMed  Google Scholar 

  27. Arck PC, Hecher K . Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med 2013; 19: 548–556.

    CAS  PubMed  Google Scholar 

  28. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111: 3108–3115.

    CAS  PubMed  Google Scholar 

  29. Sun C, Zhang YY, Tang CL, Wang SC, Piao HL, Tao Y et al. Chemokine CCL28 induces apoptosis of decidual stromal cells via binding CCR3/CCR10 in human spontaneous abortion. Mol Hum Reprod 2013; 19: 676–686.

    CAS  PubMed  Google Scholar 

  30. Hannan NJ, Jones RL, White CA, Salamonsen LA . The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto-maternal interface. Biol Reprod 2006; 74: 896–904.

    CAS  PubMed  Google Scholar 

  31. Li CM, Hou L, Zhang H, Zhang WY . CCL17 induces trophoblast migration and invasion by regulating matrix metalloproteinase and integrin expression in human first-trimester placenta. Reprod Sci 2014; in press.

  32. Huang Y, Zhu XY, Du MR, Li DJ . Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol 2008; 180: 2367–2375.

    CAS  PubMed  Google Scholar 

  33. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111: 3108–3115.

    CAS  PubMed  Google Scholar 

  34. Borroni EM, Bonecchi R, Buracchi C, Savino B, Mantovani A, Locati M . Chemokine decoy receptors: new players in reproductive immunology. Immunol Invest 2008; 37: 483–497.

    CAS  PubMed  Google Scholar 

  35. Martinez DL, Buracchi C, Borroni EM, Dupor J, Bonecchi R, Nebuloni M et al. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc Natl Acad Sci USA 2007, 104: 2319–2324.

    Google Scholar 

  36. Warning JC, McCracken SA, Morris JM . A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011; 141: 715–724.

    CAS  PubMed  Google Scholar 

  37. Nakashima A, Shima T, Inada K, Ito M, Saito S . The balance of the immune system between T cells and NK cells in miscarriage. Am J Reprod Immunol 2012; 67: 304–310.

    CAS  PubMed  Google Scholar 

  38. Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ . Human first-trimester trophoblast cells recruit CD56brightCD16 NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175: 61–68.

    CAS  PubMed  Google Scholar 

  39. Drake PM, Gunn MD, Charo IF, Tsou CL, Zhou Y, Huang L et al. Human placental cytotrophoblasts attract monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1alpha. J Exp Med 2001; 193: 1199–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jabrane-Ferrat N, Siewiera J . The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 2014; 141: 490–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sentman CL, Meadows SK, Wira CR, Eriksson M . Recruitment of uterine NK cells: induction of CXC chemokine ligands 10 and 11 in human endometrium by estradiol and progesterone. J Immunol 2004; 173: 6760–6766.

    CAS  PubMed  Google Scholar 

  42. Xie X, Kang Z, Anderson LN, He H, Lu B, Croy BA . Analysis of the contributions of L-selectin and CXCR3 in mediating leukocyte homing to pregnant mouse uterus. Am J Reprod Immunol 2005; 53: 1–12.

    CAS  PubMed  Google Scholar 

  43. Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 2001; 166: 6477–6482.

    CAS  PubMed  Google Scholar 

  44. Santoni A, Carlino C, Gismondi A . Uterine NK cell development, migration and function. Reprod Biomed Online 2008; 16: 202–210.

    CAS  PubMed  Google Scholar 

  45. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16 human natural killer cells. Blood 2003; 102: 1569–1577.

    CAS  PubMed  Google Scholar 

  46. Starnes T, Rasila KK, Robertson MJ, Brahmi Z, Dahl R, Christopherson K et al. The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: implications for the downregulation of CXCL14 in malignancy. Exp Hematol 2006; 34: 1101–1105.

    CAS  PubMed  Google Scholar 

  47. Meuter S, Schaerli P, Roos RS, Brandau O, Bosl MR, von Andrian UH et al. Murine CXCL14 is dispensable for dendritic cell function and localization within peripheral tissues. Mol Cell Biol 2007; 27: 983–992.

    CAS  PubMed  Google Scholar 

  48. Ban YL, Kong BH, Qu X, Yang QF, Ma YY . BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells in early human pregnancy decidua. Clin Exp Immunol 2008; 151: 399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gustafsson C, Mjosberg J, Matussek A, Geffers R, Matthiesen L, Berg G et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 2008; 3: e2078

    PubMed  PubMed Central  Google Scholar 

  50. Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G . A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. J Immunol 2005; 175: 8096–8104.

    CAS  PubMed  Google Scholar 

  51. Drake PM, Gunn MD, Charo IF, Tsou CL, Zhou Y, Huang L et al. Human placental cytotrophoblasts attract monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1alpha. J Exp Med 2001; 193: 1199–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha and interleukin-1beta in first trimester human decidual cells: implications for preeclampsia. Am J Pathol 2006; 168: 445–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. He YY, He XJ, Guo PF, Du MR, Shao J, Li MQ et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol 2012; 145: 161–173.

    CAS  PubMed  Google Scholar 

  54. Rozner AE, Dambaeva SV, Drenzek JG, Durning M, Golos TG . Modulation of cytokine and chemokine secretions in rhesus monkey trophoblast co-culture with decidual but not peripheral blood monocyte-derived macrophages. Am J Reprod Immunol 2011; 66: 115–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Blois SM, Kammerer U, Alba SC, Tometten MC, Shaikly V, Barrientos G et al. Dendritic cells: key to fetal tolerance? Biol Reprod 2007; 77: 590–598.

    CAS  PubMed  Google Scholar 

  56. Miyazaki S, Tsuda H, Sakai M, Hori S, Sasaki Y, Futatani T et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 2003; 74: 514–522.

    CAS  PubMed  Google Scholar 

  57. Li M, Wu ZM, Yang H, Huang SJ . NFkappaB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab 2011; 96: 2502–2511.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Linton NF, Wessels JM, Cnossen SA, van den Heuvel MJ, Croy BA, Tayade C . Angiogenic DC-SIGN+ cells are present at the attachment sites of epitheliochorial placentae. Immunol Cell Biol 2010; 88: 63–71.

    CAS  PubMed  Google Scholar 

  59. Lee SK, Kim JY, Lee M, Gilman-Sachs A, Kwak-Kim J . Th17 and regulatory T cells in women with recurrent pregnancy loss. Am J Reprod Immunol 2012; 67: 311–318.

    CAS  PubMed  Google Scholar 

  60. Syrbe U, Siveke J, Hamann A . Th1/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin Immunopathol 1999; 21: 263–285.

    CAS  PubMed  Google Scholar 

  61. Tsuda H, Michimata T, Hayakawa S, Tanebe K, Sakai M, Fujimura M et al. A Th2 chemokine, TARC, produced by trophoblasts and endometrial gland cells, regulates the infiltration of CCR4+ T lymphocytes into human decidua at early pregnancy. Am J Reprod Immunol 2002; 48: 1–8.

    PubMed  Google Scholar 

  62. Guo PF, Du MR, Wu HX, Lin Y, Jin LP, Li DJ . Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood 2010; 116: 2061–2069.

    CAS  PubMed  Google Scholar 

  63. Mjosberg J, Berg G, Jenmalm MC, Ernerudh J . FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod 2010; 82: 698–705.

    PubMed  Google Scholar 

  64. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A . Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal–fetal interface. Science 2012; 336: 1317–1321.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Thuere C, Zenclussen ML, Schumacher A, Langwisch S, Schulte-Wrede U, Teles A et al. Kinetics of regulatory T cells during murine pregnancy. Am J Reprod Immunol 2007; 58: 514–523.

    CAS  PubMed  Google Scholar 

  66. Alijotas-Reig J, Melnychuk T, Gris JM . Regulatory T cells, maternal-foetal immune tolerance and recurrent miscarriage: new therapeutic challenging opportunities. Med Clin (Barc) 2014; in press.

  67. Sakaguchi S, Yamaguchi T, Nomura T, Ono M . Regulatory T cells and immune tolerance. Cell 2008; 133: 775–787.

    CAS  PubMed  Google Scholar 

  68. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S . Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004; 10: 347–353.

    CAS  PubMed  Google Scholar 

  69. Heikkinen J, Mottonen M, Alanen A, Lassila O . Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004; 136: 373–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA . Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod 2011; 85: 397–408.

    CAS  PubMed  Google Scholar 

  71. Kallikourdis M, Andersen KG, Welch KA, Betz AG . Alloantigen-enhanced accumulation of CCR5+ ‘effector' regulatory T cells in the gravid uterus. Proc Natl Acad Sci USA 2007; 104: 594–599.

    CAS  PubMed  Google Scholar 

  72. Guerin LR, Prins JR, Robertson SA . Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 2009; 15: 517–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Darrasse-Jeze G, Klatzmann D, Charlotte F, Salomon BL, Cohen JL . CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett 2006; 102: 106–109.

    PubMed  Google Scholar 

  74. Lin Y, Xu L, Jin H, Zhong Y, Di J, Lin QD . CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in non-obese diabetic mice. Fertil Steril 2009; 91: 2687–2696.

    CAS  PubMed  Google Scholar 

  75. Arck PC, Hecher K . Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med 2013; 19: 548–556.

    CAS  PubMed  Google Scholar 

  76. Szekeres-Bartho J . Progesterone-mediated immunomodulation in pregnancy: its relevance to leukocyte immunotherapy of recurrent miscarriage. Immunotherapy 2009; 1: 873–882.

    CAS  PubMed  Google Scholar 

  77. Redzovic A, Laskarin G, Dominovic M, Haller H, Rukavina D . Mucins help to avoid alloreactivity at the maternal fetal interface. Clin Dev Immunol 2013; 2013: 542152.

    PubMed  PubMed Central  Google Scholar 

  78. Erlebacher A . Mechanisms of T cell tolerance towards the allogeneic fetus. Nat Rev Immunol 2013; 13: 23–33.

    CAS  PubMed  Google Scholar 

  79. Vacca P, Mingari MC, Moretta L . Natural killer cells in human pregnancy. J Reprod Immunol 2013; 97: 14–19.

    CAS  PubMed  Google Scholar 

  80. Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T . CXCL12–CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood 2011; 117: 451–458.

    CAS  PubMed  Google Scholar 

  81. Xu X, Wang Q, Deng B, Wang H, Dong Z, Qu X et al. Monocyte chemoattractant protein-1 secreted by decidual stromal cells inhibits NK cells cytotoxicity by up-regulating expression of SOCS3. PLoS One 2012; 7: e41869.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Piao HL, Tao Y, Zhu R, Wang SC, Tang CL, Fu Q et al. The CXCL12/CXCR4 axis is involved in the maintenance of Th2 bias at the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 2012, 9: 423–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim SH, Gunst KV, Sarvetnick N . STAT4/6-dependent differential regulation of chemokine receptors. Clin Immunol 2006; 118: 250–257.

    CAS  PubMed  Google Scholar 

  84. Piao HL, Tao Y, Zhu R, Wang SC, Tang CL, Fu Q et al. The CXCL12/CXCR4 axis is involved in the maintenance of Th2 bias at the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 2012; 9: 423–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fan DX, Duan J, Li MQ, Xu B, Li DJ, Jin LP . The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin Immunol 2011; 141: 284–292.

    CAS  PubMed  Google Scholar 

  86. Plaisier M . Decidualisation and angiogenesis. Best Pract Res Clin Obstet Gynaecol 2011; 25: 259–271.

    PubMed  Google Scholar 

  87. Pijnenborg R, Vercruysse L, Hanssens M . The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27: 939–958.

    CAS  PubMed  Google Scholar 

  88. Hannan NJ, Salamonsen LA . Role of chemokines in the endometrium and in embryo implantation. Curr Opin Obstet Gynecol 2007; 19: 266–272.

    PubMed  Google Scholar 

  89. Wu X, Li DJ, Yuan MM, Zhu Y, Wang MY . The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells. Biol Reprod 2004; 70: 1877–1885.

    CAS  PubMed  Google Scholar 

  90. Zhou WH, Du MR, Dong L, Yu J, Li DJ . Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Hum Reprod 2008; 23: 2669–2679.

    CAS  PubMed  Google Scholar 

  91. Li MQ, Tang CL, Du MR, Fan DX, Zhao HB, Xu B et al. CXCL12 controls over-invasion of trophoblasts via upregulating CD82 expression in DSCs at maternal–fetal interface of human early pregnancy in a paracrine manner. Int J Clin Exp Pathol 2011; 4: 276–286.

    PubMed  PubMed Central  Google Scholar 

  92. Zhao HB, Tang CL, Hou YL, Xue LR, Li MQ, Du MR et al. CXCL12/CXCR4 axis triggers the activation of EGF receptor and ERK signaling pathway in CsA-induced proliferation of human trophoblast cells. PLoS One 2012; 7: e38375

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palumbo R, Galvez BG, Pusterla T, de Marchis F, Cossu G, Marcu KB et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol 2007; 179: 33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang Y, Zhu XY, Du MR, Wu X, Wang MY, Li DJ . Chemokine CXCL16, a scavenger receptor, induces proliferation and invasion of first-trimester human trophoblast cells in an autocrine manner. Hum Reprod 2006; 21: 1083–1091.

    CAS  PubMed  Google Scholar 

  95. Sato Y, Higuchi T, Yoshioka S, Tatsumi K, Fujiwara H, Fujii S . Trophoblasts acquire a chemokine receptor, CCR1, as they differentiate towards invasive phenotype, Development 2003; 130: 5519–5532.

    CAS  PubMed  Google Scholar 

  96. Hirota Y, Osuga Y, Koga K, Yoshino O, Hirata T, Morimoto C et al. The expression and possible roles of chemokine CXCL11 and its receptor CXCR3 in the human endometrium. J Immunol 2006; 177: 8813–8821.

    CAS  PubMed  Google Scholar 

  97. Nagaoka K, Nojima H, Watanabe F, Chang KT, Christenson RK, Sakai S et al. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem 2003; 278: 29048–29056.

    CAS  PubMed  Google Scholar 

  98. Hirota Y, Osuga Y, Hasegawa A, Kodama A, Tajima T, Hamasaki K et al. Interleukin (IL)-1beta stimulates migration and survival of first-trimester villous cytotrophoblast cells through endometrial epithelial cell-derived IL-8. Endocrinology 2009; 150: 350–356.

    CAS  PubMed  Google Scholar 

  99. Zhang H, Hou L, Li CM, Zhang WY . The chemokine CXCL6 restricts human trophoblast cell migration and invasion by suppressing MMP-2 activity in the first trimester. Hum Reprod 2013; 28: 2350–2362.

    CAS  PubMed  Google Scholar 

  100. Laskarin G, Medancic SS, Redzovic A, Duric D, Rukavina D . Specific decidual CD14+ cells hamper cognate NK cell proliferation and cytolytic mediator expression after mucin 1 treatment in vitro. J Reprod Immunol 2012; 95: 36–45.

    CAS  PubMed  Google Scholar 

  101. Red-Horse K, Kapidzic M, Zhou Y, Feng KT, Singh H, Fisher SJ . EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation. Development 2005; 132: 4097–4106.

    CAS  PubMed  Google Scholar 

  102. Kitaya K, Nakayama T, Daikoku N, Fushiki S, Honjo H . Spatial and temporal expression of ligands for CXCR3 and CXCR4 in human endometrium. J Clin Endocrinol Metab 2004; 89: 2470–2476.

    CAS  PubMed  Google Scholar 

  103. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001; 276: 9945–9954.

    CAS  PubMed  Google Scholar 

  104. Bodnar RJ, Yates CC, Wells A . IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res 2006; 98: 617–625.

    CAS  PubMed  Google Scholar 

  105. Blois SM, Klapp BF, Barrientos G . Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 2011; 88: 86–92.

    CAS  PubMed  Google Scholar 

  106. Green CE, Liu T, Montel V, Hsiao G, Lester RD, Subramaniam S et al. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization, PLoS One 2009; 4: e6713.

    PubMed  PubMed Central  Google Scholar 

  107. Hong KH, Ryu J, Han KH . Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 2005; 105: 1405–1407.

    CAS  PubMed  Google Scholar 

  108. Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV . CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 2006; 177: 2651–2661.

    CAS  PubMed  Google Scholar 

  109. Le Bouteiller P, Tabiasco J . Killers become builders during pregnancy. Nat Med 2006; 12: 991–992.

    CAS  PubMed  Google Scholar 

  110. Le Bouteiller P, Piccinni MP . Human NK cells in pregnant uterus: why there? Am J Reprod Immunol 2008; 59: 401–406.

    CAS  PubMed  Google Scholar 

  111. Tayade C, Hilchie D, He H, Fang Y, Moons L, Carmeliet P et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol 2007; 178: 4267–4275.

    CAS  PubMed  Google Scholar 

  112. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 2006; 80: 572–580.

    CAS  PubMed  Google Scholar 

  113. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 2006; 12: 1065–1074.

    CAS  PubMed  Google Scholar 

  114. Barrientos G, Tirado-Gonzalez I, Freitag N, Kobelt P, Moschansky P, Klapp BF et al. CXCR4+ dendritic cells promote angiogenesis during embryo implantation in mice. Angiogenesis 2013; 16: 417–427.

    CAS  PubMed  Google Scholar 

  115. Kheshtchin N, Gharagozloo M, Andalib A, Ghahiri A, Maracy MR, Rezaei A . The expression of Th1- and Th2-related chemokine receptors in women with recurrent miscarriage: the impact of lymphocyte immunotherapy. Am J Reprod Immunol 2010; 64: 104–112.

    CAS  PubMed  Google Scholar 

  116. Wessels JM, Linton NF, van den Heuvel MJ, Cnossen SA, Edwards AK, Croy BA et al. Expression of chemokine decoy receptors and their ligands at the porcine maternal–fetal interface. Immunol Cell Biol 2011; 89: 304–313.

    CAS  PubMed  Google Scholar 

  117. Toldi G, Rigo JJ, Stenczer B, Vasarhelyi B, Molvarec A . Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol 2011; 66: 223–229.

    CAS  PubMed  Google Scholar 

  118. Szarka A, Rigo JJ, Lazar L, Beko G, Molvarec A . Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol 2010; 11: 59.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gotsch F, Romero R, Friel L, Kusanovic JP, Espinoza J, Erez O et al. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 2007; 20: 777–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sakai M, Sasaki Y, Yoneda S, Kasahara T, Arai T, Okada M et al. Elevated interleukin-8 in cervical mucus as an indicator for treatment to prevent premature birth and preterm, pre-labor rupture of membranes: a prospective study. Am J Reprod Immunol 2004; 51: 220–225.

    PubMed  Google Scholar 

  121. Esplin MS, Romero R, Chaiworapongsa T, Kim YM, Edwin S, Gomez R et al. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med 2005; 17: 365–373.

    CAS  PubMed  Google Scholar 

  122. Pearce BD, Garvin SE, Grove J, Bonney EA, Dudley DJ, Schendel DE et al. Serum macrophage migration inhibitory factor in the prediction of preterm delivery. Am J Obstet Gynecol 2008; 199: 41–46.

    Google Scholar 

  123. Lappas M . Nuclear factor-kappaB mediates placental growth factor induced pro-labour mediators in human placenta. Mol Hum Reprod 2012; 18: 354–361.

    CAS  PubMed  Google Scholar 

  124. Hamilton SA, Tower CL, Jones RL . Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLoS One 2013; 8: e56946.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hua R, Pease JE, Sooranna SR, Viney JM, Nelson SM, Myatt L et al. Stretch and inflammatory cytokines drive myometrial chemokine expression via NF-kappaB activation. Endocrinology 2012; 153: 481–491.

    CAS  PubMed  Google Scholar 

  126. Jacobsson B, Holst RM, Andersson B, Hagberg H . Monocyte chemotactic protein-2 and -3 in amniotic fluid: relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation and preterm delivery. Acta Obstet Gynecol Scand 2005; 84: 566–571.

    PubMed  Google Scholar 

  127. Malamitsi-Puchner A, Vrachnis N, Samoli E, Baka S, Iliodromiti Z, Puchner KP et al. Possible early prediction of preterm birth by determination of novel proinflammatory factors in midtrimester amniotic fluid. Ann NY Acad Sci 2006; 1092: 440–449.

    CAS  PubMed  Google Scholar 

  128. Hamill N, Romero R, Gotsch F, Kusanovic JP, Edwin S, Erez O et al. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med 2008; 36: 217–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gervasi MT, Romero R, Bracalente G, Erez O, Dong Z, Hassan SS et al. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med 2012; 40: 329–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin Y, Wang H, Wang W, Zeng S, Zhong Y, Li DJ . Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2+ISG20+ natural killer-cell transfer. Reproduction 2009; 137: 943–955.

    CAS  PubMed  Google Scholar 

  131. Raziel A, Schachter M, Strassburger D, Bern O, Ron-El R, Friedler S . Favorable influence of local injury to the endometrium in intracytoplasmic sperm injection patients with high-order implantation failure. Fertil Steril 2007; 87: 198–201.

    PubMed  Google Scholar 

  132. Zhou L, Li R, Wang R, Huang HX, Zhong K . Local injury to the endometrium in controlled ovarian hyperstimulation cycles improves implantation rates. Fertil Steril 2008, 89: 1166–1176.

    PubMed  Google Scholar 

  133. Gnainsky Y, Granot I, Aldo PB, Barash A, Or Schechtman YE et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril 2010; 94: 2030–2036.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Shanghai Basic Research from Shanghai Municipal Science and Technology Commission (STCSM) (12JC1401600 to DJL); the Key Project of Shanghai Municipal Education Commission (MECSM) (14ZZ013 to MRD) and Nature Science Foundation from National Nature Science Foundation of China (NSFC) (NSFC31270969 to DJL; NSFC81070537, NSFC31171437 and NSFC81370770 to MRD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Rong Du or Da-Jin Li.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, MR., Wang, SC. & Li, DJ. The integrative roles of chemokines at the maternal–fetal interface in early pregnancy. Cell Mol Immunol 11, 438–448 (2014). https://doi.org/10.1038/cmi.2014.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.68

Keywords

This article is cited by

Search

Quick links