Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mast cell homeostasis and the JAK–STAT pathway

Abstract

The Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway mediates important responses in immune cells. Activation of any of the four JAK family members leads to phosphorylation of one or more of seven STAT family members. Phosphorylation of STAT family members leads to their dimerization and translocation into the nucleus, in which they bind specific DNA sequences to activate gene transcription. Regulation of JAKs and STATs therefore has a significant effect on signal transduction and subsequent cellular responses. Mast cells are important mediators of allergic disease and asthma. These cells have the ability to cause profound inflammation and vasodilation upon the release of preformed mediators, as well as subsequent synthesis of new inflammatory mediators. The regulation of mast cells is therefore of intense interest for the treatment of allergic disease. An important regulator of mast cells, STAT5, is activated downstream of the receptors for immunoglobulin E, interleukin-3 and stem cell factor. STAT5 contributes to mast cell homeostasis, by mediating proliferation, survival, and mediator release. Regulators of the JAK–STAT pathway, such as the suppressors of cytokine signaling (SOCS) and protein inhibitor of activated STAT (PIAS) proteins, are required to fine tune the immune response and maintain homeostasis. A better understanding of the role and regulation of JAKs and STATs in mast cells is vital for the development of new therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kalesnikoff J, Galli SJ . New developments in mast cell biology. Nat Immunol 2008; 9: 1215–1223.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Levy DE, Kessler DS, Pine R, Reich N, Darnell Jr JE . Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev 1988; 2: 383–393.

    CAS  PubMed  Google Scholar 

  3. Rutherford MN, Hannigan GE, Williams BR . Interferon-induced binding of nuclear factors to promoter elements of the 2–5A synthetase gene. EMBO J 1988; 7: 751–759.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schindler C, Shuai K, Prezioso VR, Darnell Jr JE . Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992; 257: 809–813.

    CAS  PubMed  Google Scholar 

  5. Shuai K, Schindler C, Prezioso VR, Darnell Jr JE . Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 1992; 258: 1808–1812.

    CAS  PubMed  Google Scholar 

  6. Velazquez L, Fellous M, Stark GR, Pellegrini S . A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992; 70: 313–322.

    CAS  PubMed  Google Scholar 

  7. Shelburne CP, McCoy ME, Piekorz R, Sexl V, Roh KH, Jacobs-Helber SM et al. Stat5 expression is critical for mast cell development and survival. Blood 2003; 102: 1290–1297.

    CAS  PubMed  Google Scholar 

  8. Shelburne CP, McCoy ME, Piekorz R, Sexl VV, Gillespie SR, Bailey DP et al. Stat5: an essential regulator of mast cell biology. Mol Immunol 2002; 38: 1187–1191.

    CAS  PubMed  Google Scholar 

  9. Darnell JE, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    CAS  PubMed  Google Scholar 

  10. Shuai K, Liu B . Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3: 900–911.

    CAS  PubMed  Google Scholar 

  11. Levy DE, Darnell Jr JE . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651–662.

    CAS  PubMed  Google Scholar 

  12. Darnell Jr JE . STATs and gene regulation. Science 1997; 277: 1630–1635.

    CAS  PubMed  Google Scholar 

  13. Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF . JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 1992; 7: 1347–1353.

    CAS  PubMed  Google Scholar 

  14. Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A . Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 1991; 11: 2057–2065.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Giordanetto F, Kroemer RT . Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng 2002; 15: 727–737.

    CAS  PubMed  Google Scholar 

  16. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell Jr JE . Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 1994; 76: 821–828.

    CAS  PubMed  Google Scholar 

  17. Fu XY, Zhang JJ . Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 1993; 74: 1135–1145.

    CAS  PubMed  Google Scholar 

  18. Schindler C, Plumlee C . Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol 2008; 19: 311–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shuai K, Stark GR, Kerr IM, Darnell Jr JE . A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 1993; 261: 1744–1746.

    CAS  PubMed  Google Scholar 

  20. Shuai K, Liao J, Song MM . Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol Cell Biol 1996; 16: 4932–4941.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Sun YL, Hoey T . Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 1996; 273: 794–797.

    CAS  PubMed  Google Scholar 

  22. Muller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE et al. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J 1993; 12: 4221–4228.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brizzi MF, Dentelli P, Gambino R, Cabodi S, Cassader M, Castelli A et al. STAT5 activation induced by diabetic LDL depends on LDL glycation and occurs via src kinase activity. Diabetes 2002; 51: 3311–3317.

    CAS  PubMed  Google Scholar 

  24. Ryan JJ, Huang H, McReynolds LJ, Shelburne C, Hu-Li J, Huff TF et al. Stem cell factor activates STAT-5 DNA binding in IL-3-derived bone marrow mast cells. Exp Hematol 1997; 25: 357–362.

    CAS  PubMed  Google Scholar 

  25. Gotoh A, Takahira H, Mantel C, Litz-Jackson S, Boswell HS, Broxmeyer HE . Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood 1996; 88: 138–145.

    CAS  PubMed  Google Scholar 

  26. Brizzi MF, Dentelli P, Rosso A, Yarden Y, Pegoraro L . STAT protein recruitment and activation in c-Kit deletion mutants. J Biol Chem 1999; 274: 16965–16972.

    CAS  PubMed  Google Scholar 

  27. Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA . Kit and FcepsilonRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood 2004; 104: 2410–2417.

    CAS  PubMed  Google Scholar 

  28. Okayama Y, Kawakami T . Development, migration, and survival of mast cells. Immunol Res 2006; 34: 97–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leonard WJ . Type I cytokines and interferons and their receptors. In: Paul WE (ed) Fundamental Immunology. 5th edn. Lippincott Williams and Wilkins: Philadelphia, 2003. p 701.

    Google Scholar 

  30. Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 1998; 392: 90–93.

    CAS  PubMed  Google Scholar 

  31. Shivakrupa R, Linnekin D . Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells. Cell Signal 2005; 17: 103–109.

    CAS  PubMed  Google Scholar 

  32. Alexander WS . Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2002; 2: 410–416.

    CAS  PubMed  Google Scholar 

  33. Greenhalgh CJ, Hilton DJ . Negative regulation of cytokine signaling. J Leukoc Biol 2001; 70: 348–356.

    CAS  PubMed  Google Scholar 

  34. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921.

    CAS  PubMed  Google Scholar 

  35. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929.

    CAS  PubMed  Google Scholar 

  36. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924.

    CAS  PubMed  Google Scholar 

  37. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A . CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 2000; 275: 29338–29347.

    CAS  PubMed  Google Scholar 

  38. Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 1999; 18: 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen Z, Zhong Z, Darnell Jr JE . Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82: 241–250.

    CAS  PubMed  Google Scholar 

  40. Zhang JG, Metcalf D, Rakar S, Asimakis M, Greenhalgh CJ, Willson TA et al. The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc Natl Acad Sci USA 2001; 98: 13261–13265.

    CAS  PubMed  Google Scholar 

  41. Decker T, Kovarik P . Serine phosphorylation of STATs. Oncogene 2000; 19: 2628–2637.

    CAS  PubMed  Google Scholar 

  42. Lim CP, Cao X . Structure, function, and regulation of STAT proteins. Mol Biosyst 2006; 2: 536–550.

    CAS  PubMed  Google Scholar 

  43. Zhu X, Wen Z, Xu LZ, Darnell Jr JE . Stat1 serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol Cell Biol 1997; 17: 6618–6623.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kovarik P, Stoiber D, Novy M, Decker T . Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J 1998; 17: 3660–3668.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Horvath CM, Darnell Jr JE . The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Stat1 protein. J Virol 1996; 70: 647–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung J, Uchida E, Grammer TC, Blenis J . STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17: 6508–6516.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schuringa JJ, Jonk LJ, Dokter WH, Vellenga E, Kruijer W . Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem J 2000; 347 (Part 1): 89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kotaja N, Karvonen U, Janne OA, Palvimo JJ . PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002; 22: 5222–5234.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Q, Verma IM . NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725–734.

    CAS  PubMed  Google Scholar 

  50. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17: 677–687.

    CAS  PubMed  Google Scholar 

  51. Tanaka T, Soriano MA, Grusby MJ . SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity 2005; 22: 729–736.

    CAS  PubMed  Google Scholar 

  52. Sherman MA, Secor VH, Brown MA . IL-4 preferentially activates a novel STAT6 isoform in mast cells. J Immunol 1999; 162: 2703–2708.

    CAS  PubMed  Google Scholar 

  53. Suzuki K, Nakajima H, Ikeda K, Tamachi T, Hiwasa T, Saito Y et al. Stat6-protease but not Stat5-protease is inhibited by an elastase inhibitor ONO-5046. Biochem Biophys Res Commun 2003; 309: 768–773.

    CAS  PubMed  Google Scholar 

  54. Shelburne CP, Piekorz RP, Bouton LA, Chong HJ, Ryan JJ . Mast cell-restricted p70 Stat6 isoform is a product of selective proteolysis. Cytokine 2002; 19: 218–227.

    CAS  PubMed  Google Scholar 

  55. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    CAS  PubMed  Google Scholar 

  56. Xie S, Lin H, Sun T, Arlinghaus RB . Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 2002; 21: 7137–7146.

    CAS  PubMed  Google Scholar 

  57. Chen W, Khurana Hershey GK . Signal transducer and activator of transcription signals in allergic disease. J Allergy Clin Immunol 2007; 119: 529–541; quiz 542-543.

    CAS  PubMed  Google Scholar 

  58. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    CAS  PubMed  Google Scholar 

  59. Sasanuma H, Tatsuno A, Tsuji K, Hidano S, Morita S, Kitamura T et al. Transcriptional regulation of SLP-76 family hematopoietic cell adaptor MIST/Clnk by STAT5. Biochem Biophys Res Commun 2004; 321: 145–153.

    CAS  PubMed  Google Scholar 

  60. Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ . Stat1 depends on transcriptional synergy with Sp1. J Biol Chem 1995; 270: 30264–30267.

    CAS  PubMed  Google Scholar 

  61. Schaefer TS, Sanders LK, Nathans D . Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA 1995; 92: 9097–9101.

    CAS  PubMed  Google Scholar 

  62. Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D’Andrea A et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 1996; 383: 344–347.

    CAS  PubMed  Google Scholar 

  63. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell Jr JE . Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA 1996; 93: 15092–15096.

    CAS  PubMed  Google Scholar 

  64. Gingras S, Simard J, Groner B, Pfitzner E . p300/CBP is required for transcriptional induction by interleukin-4 and interacts with Stat6. Nucleic Acids Res 1999; 27: 2722–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nunez G et al. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 1999; 274: 22165–22169.

    CAS  Google Scholar 

  66. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 1999; 18: 4191–4199.

    CAS  PubMed  Google Scholar 

  67. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    CAS  PubMed  Google Scholar 

  68. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mekori YA, Gilfillan AM, Akin C, Hartmann K, Metcalfe DD . Human mast cell apoptosis is regulated through Bcl-2 and Bcl-XL. J Clin Immunol 2001; 21: 171–174.

    CAS  PubMed  Google Scholar 

  70. Mekori YA, Oh CK, Dastych J, Goff JP, Adachi S, Bianchine PJ et al. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit. Immunology 1997; 90: 518–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ikeda K, Nakajima H, Suzuki K, Watanabe N, Kagami S, Iwamoto I . Stat5a is essential for the proliferation and survival of murine mast cells. Int Arch Allergy Immunol 2005; 137 (Suppl 1): 45–50.

    CAS  PubMed  Google Scholar 

  72. Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Yoshikai Y . Interleukin-15 prevents mouse mast cell apoptosis through STAT6-mediated Bcl-xL expression. J Biol Chem 2001; 276: 26107–26113.

    CAS  PubMed  Google Scholar 

  73. Buettner R, Mora LB, Jove R . Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8: 945–954.

    CAS  PubMed  Google Scholar 

  74. Xi S, Zhang Q, Dyer KF, Lerner EC, Smithgall TE, Gooding WE et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck. J Biol Chem 2003; 278: 31574–31583.

    CAS  PubMed  Google Scholar 

  75. Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ . IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol 2004; 173: 6409–6417.

    CAS  PubMed  Google Scholar 

  76. Kay AB . Allergy and allergic diseases. First of two parts. N Engl J Med 2001; 344: 30–37.

    CAS  PubMed  Google Scholar 

  77. Pernis AB, Rothman PB . JAK-STAT signaling in asthma. J Clin Invest 2002; 109: 1279–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bischoff SC . Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 2007; 7: 93–104.

    CAS  PubMed  Google Scholar 

  79. Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P . IFNs and STATs in innate immunity to microorganisms. J Clin Invest 2002; 109: 1271–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaplan MH, Sun YL, Hoey T, Grusby MJ . Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996; 382: 174–177.

    CAS  Google Scholar 

  81. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S et al. Essential role of Stat6 in IL-4 signalling. Nature 1996; 380: 627–630.

    CAS  PubMed  Google Scholar 

  82. Barnstein BO, Li G, Wang Z, Kennedy S, Chalfant C, Nakajima H et al. Stat5 expression is required for IgE-mediated mast cell function. J Immunol 2006; 177: 3421–3426.

    CAS  PubMed  Google Scholar 

  83. Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD . Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 2001; 193: 1087–1096.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaplan MH, Grusby MJ . Regulation of T helper cell differentiation by STAT molecules. J Leukoc Biol 1998; 64: 2–5.

    CAS  PubMed  Google Scholar 

  85. Akimoto T, Numata F, Tamura M, Takata Y, Higashida N, Takashi T et al. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 1998; 187: 1537–1542.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Miyata S, Matsuyama T, Kodama T, Nishioka Y, Kuribayashi K, Takeda K et al. STAT6 deficiency in a mouse model of allergen-induced airways inflammation abolishes eosinophilia but induces infiltration of CD8+ T cells. Clin Exp Allergy 1999; 29: 114–123.

    CAS  PubMed  Google Scholar 

  87. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    CAS  PubMed  Google Scholar 

  88. Metcalfe DD . Mast cells and mastocytosis. Blood 2008; 112: 946–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 2009; 113: 5727–5736.

    CAS  PubMed  Google Scholar 

  90. Grimwade LF, Happerfield L, Tristram C, McIntosh G, Rees M, Bench AJ et al. Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Br J Haematol 2009; 147: 495–506.

    CAS  PubMed  Google Scholar 

  91. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  92. Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 1997; 17: 1562–1571.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    CAS  PubMed  Google Scholar 

  94. Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 2006; 281: 18177–18183.

    CAS  PubMed  Google Scholar 

  95. Harir N, Boudot C, Friedbichler K, Sonneck K, Kondo R, Martin-Lanneree S et al. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade. Blood 2008; 112: 2463–2473.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009; 9: 550–562.

    CAS  PubMed  Google Scholar 

  97. Pedersen M, Ronnstrand L, Sun J . The c-Kit/D816V mutation eliminates the differences in signal transduction and biological responses between two isoforms of c-Kit. Cell Signal 2009; 21: 413–418.

    CAS  PubMed  Google Scholar 

  98. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92: 1736–1744.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564.

    CAS  PubMed  Google Scholar 

  100. Sun J, Pedersen M, Ronnstrand L . The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem 2009; 284: 11039–11047.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Baumgartner C, Cerny-Reiterer S, Sonneck K, Mayerhofer M, Gleixner KV, Fritz R et al. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis. Subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J Pathol 2009; 175: 2416–2429.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Steinberg M . Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther 2007; 29: 2289–2308.

    CAS  PubMed  Google Scholar 

  103. Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006; 108: 286–291.

    CAS  PubMed  Google Scholar 

  104. Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 2006; 66: 473–481.

    CAS  PubMed  Google Scholar 

  105. Verstovsek S, Tefferi A, Cortes J, O’Brien S, Garcia-Manero G, Pardanani A et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res 2008; 14: 3906–3915.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Bohm A et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    CAS  PubMed  Google Scholar 

  107. Gleixner KV, Mayerhofer M, Sonneck K, Gruze A, Samorapoompichit P, Baumgartner C et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 2007; 92: 1451–1459.

    CAS  PubMed  Google Scholar 

  108. El Fitori J, Su Y, Buchler P, Ludwig R, Giese NA, Buchler MW et al. PKC 412 small-molecule tyrosine kinase inhibitor: single-compound therapy for pancreatic cancer. Cancer 2007; 110: 1457–1468.

    CAS  PubMed  Google Scholar 

  109. Aichberger KJ, Mayerhofer M, Gleixner KV, Krauth MT, Gruze A, Pickl WF et al. Identification of MCL1 as a novel target in neoplastic mast cells in systemic mastocytosis: inhibition of mast cell survival by MCL1 antisense oligonucleotides and synergism with PKC412. Blood 2007; 109: 3031–3041.

    CAS  PubMed  Google Scholar 

  110. Aichberger KJ, Gleixner KV, Mirkina I, Cerny-Reiterer S, Peter B, Ferenc V et al. Identification of pro-apoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs. Blood 2009; 114: 5342–5351.

    CAS  PubMed  Google Scholar 

  111. Garber K . JAK2 inhibitors: not the next imatinib but researchers see other possibilities. J Natl Cancer Inst 2009; 101: 980–982.

    PubMed  Google Scholar 

  112. Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O’Shea JJ . Therapeutic targeting of Janus kinases. Immunol Rev 2008; 223: 132–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Linehan LA, Warren WD, Thompson PA, Grusby MJ, Berton MT . STAT6 is required for IL-4-induced germline Ig gene transcription and switch recombination. J Immunol 1998; 161: 302–310.

    CAS  PubMed  Google Scholar 

  114. Punnonen J, de Vries JE . IL-13 induces proliferation, Ig isotype switching, and Ig synthesis by immature human fetal B cells. J Immunol 1994; 152: 1094–1102.

    CAS  PubMed  Google Scholar 

  115. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993; 90: 3730–3734.

    CAS  PubMed  Google Scholar 

  116. Speiran K, Bailey DP, Fernando J, Macey M, Barnstein B, Kolawole M et al. Endogenous suppression of mast cell development and survival by IL-4 and IL-10. J Leukoc Biol 2009; 85: 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mirmonsef P, Shelburne CP, Fitzhugh Yeatman C, Chong HJ, Ryan JJ . Inhibition of Kit expression by IL-4 and IL-10 in murine mast cells: role of STAT6 and phosphatidylinositol 3′-kinase. J Immunol 1999; 163: 2530–2539.

    CAS  PubMed  Google Scholar 

  118. Gillespie SR, DeMartino RR, Zhu J, Chong HJ, Ramirez C, Shelburne CP et al. IL-10 inhibits Fc epsilon RI expression in mouse mast cells. J Immunol 2004; 172: 3181–3188.

    CAS  PubMed  Google Scholar 

  119. Bailey DP, Kashyap M, Bouton LA, Murray PJ, Ryan JJ . Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol 2006; 80: 581–589.

    CAS  PubMed  Google Scholar 

  120. Yeatman CF, Jacobs-Helber SM, Mirmonsef P, Gillespie SR, Bouton LA, Collins HA et al. Combined stimulation with the T helper cell type 2 cytokines interleukin (IL)-4 and IL-10 induces mouse mast cell apoptosis. J Exp Med 2000; 192: 1093–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu ZQ, Zhao WH, Shimamura T, Galli SJ . Interleukin-4-triggered, STAT6-dependent production of a factor that induces mouse mast cell apoptosis. Eur J Immunol 2006; 36: 1275–1284.

    CAS  PubMed  Google Scholar 

  122. Kennedy Norton S, Barnstein B, Brenzovich J, Bailey DP, Kashyap M, Speiran K et al. IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo. J Immunol 2008; 180: 2848–2854.

    CAS  PubMed  Google Scholar 

  123. Zhao W, Gomez G, Yu SH, Ryan JJ, Schwartz LB . TGF-beta1 attenuates mediator release and de novo Kit expression by human skin mast cells through a Smad-dependent pathway. J Immunol 2008; 181: 7263–7272.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gomez G, Ramirez CD, Rivera J, Patel M, Norozian F, Wright HV et al. TGF-beta 1 inhibits mast cell Fc epsilon RI expression. J Immunol 2005; 174: 5987–5993.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ryan JJ, Kashyap M, Bailey D, Kennedy S, Speiran K, Brenzovich J et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit Rev Immunol 2007; 27: 15–32.

    CAS  PubMed  Google Scholar 

  126. Kashyap M, Bailey DP, Gomez G, Rivera J, Huff TF, Ryan JJ . TGF-beta1 inhibits late-stage mast cell maturation. Exp Hematol 2005; 33: 1281–1291.

    CAS  PubMed  Google Scholar 

  127. Kouro T, Takatsu K . IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol 2009; 21: 1303–1309.

    CAS  PubMed  Google Scholar 

  128. Takatsu K, Nakajima H . IL-5 and eosinophilia. Curr Opin Immunol 2008; 20: 288–294.

    CAS  PubMed  Google Scholar 

  129. Paplinska M, Grubek-Jaworska H, Chazan R . Role of eotaxin in the pathophysiology of asthma. Pneumonol Alergol Pol 2007; 75: 180–185.

    CAS  PubMed  Google Scholar 

  130. Conroy DM, Williams TJ . Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res 2001; 2: 150–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Brightling CE, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID, Bradding P . Interleukin-4 and -13 expression is co-localized to mast cells within the airway smooth muscle in asthma. Clin Exp Allergy 2003; 33: 1711–1716.

    CAS  PubMed  Google Scholar 

  132. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID . Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002; 346: 1699–1705.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (1R01AI59638 and U19AI077435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Ryan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J., Falanga, Y., Depcrynski, A. et al. Mast cell homeostasis and the JAK–STAT pathway. Genes Immun 11, 599–608 (2010). https://doi.org/10.1038/gene.2010.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.35

Keywords

This article is cited by

Search

Quick links