Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic delivery of E6/7 siRNA using novel lipidic particles and its application with cisplatin in cervical cancer mouse models

Abstract

Small interfering RNA (siRNA) shows great promise in cancer therapy, but its effectiveness in vivo still remains a crucial issue for its transition into the clinics. Although the successful use of polyethylene glycol (PEG)ylated lipidic delivery systems have already been reported, most of the formulation procedures used are labour intensive and also result in unstable end products. We have previously developed a simple yet efficient hydration-of-freeze-dried-matrix (HFDM) method to entrap siRNA within lipid particles, in which the products exhibited superior stability. Here, we show that these HFDM-formulated particles are stable in the presence of serum and can deliver siRNA efficiently to tumours after intravenous administration. Using these particles, around 50% knockdown of the target gene expression was observed in tumours. With the use of siRNA targeting the E6/7 oncogenes expressed in cervical cancer, we showed a 50% reduction in tumour size. This level of tumour growth suppression was comparable to that achieved from cisplatin at the clinically used dose. Overall, our results demonstrate the feasibility of using HFDM-formulated particles to systematically administer E6/7-targeted siRNA for cervical cancer treatment. The simplicity of preparation procedure along with superior product stability obtained from our method offers an innovative approach for the in vivo delivery of siRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Putral LN, Bywater MJ, Gu W, Saunders NA, Gabrielli BG, Leggatt GR et al. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol 2005; 68: 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  2. Putral L, Gu W, McMillan N . RNA interference for the treatment of cancer. Drug News Perspect 2006; 19: 317–324.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Wang CY, Dong JH, Chen X, Zhang M, Zhao G . Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol 2005; 11: 2026–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 2009; 119: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li SD, Chen YC, Hackett MJ, Huang L . Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2008; 16: 163–169.

    Article  CAS  PubMed  Google Scholar 

  6. Yagi N, Manabe I, Tottori T, Ishihara A, Ogata F, Kim JH et al. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Res 2009; 69: 6531–6538.

    Article  CAS  PubMed  Google Scholar 

  7. Wu SY, Putral LN, Liang M, Chang HI, Davies NM, McMillan NA . Development of a novel method for formulating stable siRNA-loaded lipid particles for in vivo use. Pharm Res 2009; 26: 512–522.

    Article  CAS  PubMed  Google Scholar 

  8. Wright TC, Van Damme P, Schmitt H-J, Meheus A . Chapter 14: HPV vaccine introduction in industrialized countries. Vaccine 2006; 24: S122–S131.

    Article  Google Scholar 

  9. Moore DH . Chemotherapy for advanced, recurrent, and metastatic cervical cancer. J Natl Compr Canc Netw 2008; 6: 53–57.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  11. Hall AHS, Alexander KA . RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 2003; 77: 6066–6069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  13. Lea JS, Sunaga N, Sato M, Kalahasti G, Miller DS, Minna JD et al. Silencing of HPV 18 oncoproteins with RNA interference causes growth inhibition of cervical cancer cells. Reprod Sci 2007; 14: 20–28.

    Article  CAS  PubMed  Google Scholar 

  14. Fujii T, Saito M, Iwasaki E, Ochiya T, Takei Y, Hayashi S et al. Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. Int J Oncol 2006; 29: 541–548.

    CAS  PubMed  Google Scholar 

  15. Niu X, Peng Z, Duan W, Wang H, Wang P . Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer 2006; 16: 743–751.

    Article  PubMed  Google Scholar 

  16. Viel T, Boisgard R, Kuhnast B, Jego B, Siquier-Pernet K, Hinnen F et al. Molecular imaging study on in vivo distribution and pharmacokinetics of modified small interfering RNAs (siRNAs). Oligonucleotides 2008; 18: 201–212.

    Article  CAS  PubMed  Google Scholar 

  17. Jonson AL, Rogers LM, Ramakrishnan S, Downs Jr LS . Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008; 111: 356–364.

    Article  CAS  PubMed  Google Scholar 

  18. Yamato K, Yamada T, Kizaki M, Ui-Tei K, Natori Y, Fujino M et al. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther 2008; 15: 140–153.

    Article  CAS  PubMed  Google Scholar 

  19. Ji H, Chang EY, Lin KY, Kurman RJ, Pardoll DM, Wu TC . Antigen-specific immunotherapy for murine lung metastatic tumors expressing human papillomavirus type 16 E7 oncoprotein. Int J Cancer 1998; 78: 41–45.

    Article  CAS  PubMed  Google Scholar 

  20. Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res 2009; 26: 382–394.

    Article  CAS  PubMed  Google Scholar 

  21. Koivusalo R, Krausz E, Helenius H, Hietanen S . Chemotherapy compounds in cervical cancer cells primed by reconstitution of p53 function after short interfering RNA-mediated degradation of human papillomavirus 18 E6 mRNA: opposite effect of siRNA in combination with different drugs. Mol Pharmacol 2005; 68: 372–382.

    CAS  PubMed  Google Scholar 

  22. Liu ZG, Zhao LN, Liu YW, Li TT, Fan DM, Chen JJ . Activation of Cdc2 contributes to apoptosis in HPV E6 expressing human keratinocytes in response to therapeutic agents. J Mol Biol 2007; 374: 334–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M . Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials 2007; 28: 1434–1442.

    Article  CAS  PubMed  Google Scholar 

  24. Abrams MT, Koser ML, Seitzer J, Williams SC, Dipietro MA, Wang W et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 2009; 18: 171–180.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sorensen D, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327: 761–766.

    Article  CAS  PubMed  Google Scholar 

  26. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 2004; 10: 7721–7726.

    Article  CAS  PubMed  Google Scholar 

  27. Chien P, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 2005; 12: 321–328.

    Article  CAS  PubMed  Google Scholar 

  28. Pal A, Ahmad A, Khan S, Sakabe I, Zhang CB, Kasid UN et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol 2005; 26: 1087–1091.

    CAS  PubMed  Google Scholar 

  29. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release 2009; 138: 148–159.

    Article  CAS  PubMed  Google Scholar 

  30. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther 2006; 13: 1360–1370.

    Article  CAS  PubMed  Google Scholar 

  31. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME . Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 2007; 104: 15549–15554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Villares GJ, Zigler M, Wang H, Melnikova VO, Wu H, Friedman R et al. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res 2008; 68: 9078–9086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medarova Z, Pham W, Farrar C, Petkova V, Moore A . In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007; 13: 372–377.

    Article  CAS  PubMed  Google Scholar 

  34. Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Master G et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 2009; 37: 4559–4569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 2006; 13: 1222–1234.

    Article  CAS  PubMed  Google Scholar 

  36. Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 2008; 68: 8843–8851.

    Article  CAS  PubMed  Google Scholar 

  37. Liu WL, Green N, Seymour LW, Stevenson M . Paclitaxel combined with siRNA targeting HPV16 oncogenes improves cytotoxicity for cervical carcinoma. Cancer Gene Ther 2009; 16: 764–775.

    Article  CAS  PubMed  Google Scholar 

  38. Bonner J, Harari P, Giralt J, Azarnia N, Cohen R, Raben D et al. Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: a phase III study of high dose radiation therapy with or without cetuximab. J Clin Oncol 2004; 22: 5507 (Meeting Abstracts).

  39. Hagemann T, Bozanovic T, Hooper S, Ljubic A, Slettenaar VI, Wilson JL et al. Molecular profiling of cervical cancer progression. Br J Cancer 2007; 96: 321–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manavi M, Hudelist G, Fink-Retter A, Gschwandtler-Kaulich D, Pischinger K, Czerwenka K . Gene profiling in Pap-cell smears of high-risk human papillomavirus-positive squamous cervical carcinoma. Gynecol Oncol 2007; 105: 418–426.

    Article  CAS  PubMed  Google Scholar 

  41. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

  42. Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13: 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  43. Lee CH, Ni YH, Chen CC, Chou CK, Chang FH . Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. Biochim Biophys Acta 2003; 1611: 55–62.

    Article  CAS  PubMed  Google Scholar 

  44. Sakurai F, Nishioka T, Saito H, Baba T, Okuda A, Matsumoto O et al. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 2001; 8: 677–686.

    Article  CAS  PubMed  Google Scholar 

  45. Ito Y, Kawakami S, Charoensit P, Higuchi Y, Hashida M . Evaluation of proinflammatory cytokine production and liver injury induced by plasmid DNA/cationic liposome complexes with various mixing ratios in mice. Eur J Pharm Biopharm 2009; 71: 303–309.

    Article  CAS  PubMed  Google Scholar 

  46. Charoensit P, Kawakami S, Higuchi Y, Hashida M . Incorporation of all-trans retinoic acid into lipoplexes inhibits nuclear factor kappaB activation mediated liver injury induced by lipoplexes in mice. J Gene Med 2008; 10: 61–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Health and Medical Research Council (NHMRC). We thank Danielle Wilson, Claudia Cueva and Kim Woolley for their assistance in animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N A J McMillan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Singhania, A., Burgess, M. et al. Systemic delivery of E6/7 siRNA using novel lipidic particles and its application with cisplatin in cervical cancer mouse models. Gene Ther 18, 14–22 (2011). https://doi.org/10.1038/gt.2010.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.113

Keywords

This article is cited by

Search

Quick links