Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential

Abstract

In vitro culture systems of human myogenic cells contribute greatly to elucidation of the molecular mechanisms underlying terminal myogenic differentiation and symptoms of neuromuscular diseases. However, human myogenic cells have limited ability to proliferate in culture. We have established an improved immortalization protocol for human myogenic cells derived from healthy and diseased muscles; constitutive expression of mutated cyclin-dependent kinase 4, cyclin D1 and telomerase immortalized human myogenic cells. Normal diploid chromosomes were preserved after immortalization. The immortalized human myogenic cells divided as rapidly as primary human myogenic cells during the early passages, and underwent myogenic, osteogenic and adipogenic differentiation under appropriate culture conditions. The immortalized cells contributed to muscle differentiation upon xenotransplantation to immunodeficient mice under conditions of regeneration following muscle injury. We also succeeded in immortalizing cryopreserved human myogenic cells derived from Leigh disease patients following primary culture. Forced expression of the three genes shortened their cell cycle to <30 h, which is similar to the doubling time of primary cultured human myogenic cells during early passages. The immortalization protocol described here allowed human myogenic cells to recapture high proliferation activity without compromising their differentiation potential and normal diploidy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA . Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 2006; 172: 103–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Oustanina S, Hause G, Braun T . Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004; 23: 3430–3439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Yaffe D, Saxel O . Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 1977; 270: 725–727.

    Article  CAS  PubMed  Google Scholar 

  4. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N . Generation of different fates from multipotent muscle stem cells. Development 2002; 129: 2987–2995.

    CAS  PubMed  Google Scholar 

  5. Mukai A, Hashimoto N . Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp Cell Res 2008; 314: 387–397.

    Article  CAS  PubMed  Google Scholar 

  6. Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS . Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 1997; 8: 1429–1438.

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto Y, Nonaka I et al. Osteogenic properties of human myogenic progenitor cells. Mech Dev 2008; 125: 257–269.

    Article  CAS  PubMed  Google Scholar 

  8. Bigot A, Jacquemin V, Debacq-Chainiaux F, Butler-Browne GS, Toussaint O, Furling D et al. Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 2008; 100: 189–199.

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto N, Kiyono T, Wada MR, Shimizu S, Yasumoto S, Inagawa M . Immortalization of human myogenic progenitor cell clone retaining multipotentiality. Biochem Biophys Res Commun 2006; 348: 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  10. Seigneurin-Venin S, Bernard V, Tremblay JP . Telomerase allows the immortalization of T antigen-positive DMD myoblasts: a new source of cells for gene transfer application. Gene Therapy 2000; 7: 619–623.

    Article  CAS  PubMed  Google Scholar 

  11. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  CAS  PubMed  Google Scholar 

  12. Gorbunova V, Seluanov A, Pereira-Smith OM . Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 2002; 277: 38540–38549.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW et al. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 2007; 6: 515–523.

    Article  CAS  PubMed  Google Scholar 

  14. Cudre-Mauroux C, Occhiodoro T, Konig S, Salmon P, Bernheim L, Trono D . Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a Duchenne myoblast cell line with long-term genotypic and phenotypic stability. Hum Gene Ther 2003; 14: 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  15. Mukai A, Kurisaki T, Sato SB, Kobayashi T, Kondoh G, Hashimoto N . Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp Cell Res 2009; 315: 3052–3063.

    Article  CAS  PubMed  Google Scholar 

  16. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V . Regenerative potential of human skeletal muscle during aging. Aging Cell 2002; 1: 132–139.

    Article  CAS  PubMed  Google Scholar 

  17. Sajko S, Kubinova L, Cvetko E, Kreft M, Wernig A, Erzen I . Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. J Histochem Cytochem 2004; 52: 179–185.

    Article  CAS  PubMed  Google Scholar 

  18. Wright WE, Shay JW . Historical claims and current interpretations of replicative aging. Nat Biotechnol 2002; 20: 682–688.

    Article  CAS  PubMed  Google Scholar 

  19. Shay JW, Wright WE . Telomeres and telomerase: implications for cancer and aging. Radiat Res 2001; 155 (1 Part 2): 188–193.

    Article  CAS  PubMed  Google Scholar 

  20. Shay JW, Wright WE . Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 2005; 26: 867–874.

    Article  CAS  PubMed  Google Scholar 

  21. Toussaint O, Medrano EE, von Zglinicki T . Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 2000; 35: 927–945.

    Article  CAS  PubMed  Google Scholar 

  22. Haga K, Ohno S, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M et al. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 2007; 98: 147–154.

    Article  CAS  PubMed  Google Scholar 

  23. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  24. Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 2004; 64: 9027–9034.

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 2001; 15: 398–403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Carlson BM, Faulkner JA . Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 1989; 256 (6 Part 1): C1262–C1266.

    Article  CAS  PubMed  Google Scholar 

  27. Benbassat CA, Maki KC, Unterman TG . Circulating levels of insulin-like growth factor (IGF) binding protein-1 and -3 in aging men: relationships to insulin, glucose, IGF, and dehydroepiandrosterone sulfate levels and anthropometric measures. J Clin Endocrinol Metab 1997; 82: 1484–1491.

    CAS  PubMed  Google Scholar 

  28. Doherty TJ, Vandervoort AA, Brown WF . Effects of ageing on the motor unit: a brief review. Can J Appl Physiol 1993; 18: 331–358.

    Article  CAS  PubMed  Google Scholar 

  29. Rando TA, Blau HM . Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 1994; 125: 1275–1287.

    Article  CAS  PubMed  Google Scholar 

  30. Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS . Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 2000; 10: 113–120.

    Article  CAS  PubMed  Google Scholar 

  31. Rao SS, Kohtz DS . Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 1995; 270: 4093–4100.

    Article  CAS  PubMed  Google Scholar 

  32. Guo K, Walsh K . Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J Biol Chem 1997; 272: 791–797.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto N, Ogashiwa M, Iwashita S . Role of tyrosine kinase in the regulation of myogenin expression. Eur J Biochem 1995; 227: 379–387.

    Article  CAS  PubMed  Google Scholar 

  34. Hashimoto N, Ogashiwa M, Okumura E, Endo T, Iwashita S, Kishimoto T . Phosphorylation of a proline-directed kinase motif is responsible for structural changes in myogenin. FEBS Lett 1994; 352: 236–242.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki R, Narisawa-Saito M, Yugawa T, Fujita M, Tashiro H, Katabuchi H et al. Oncogenic transformation of human ovarian surface epithelial cells with defined cellular oncogenes. Carcinogenesis 2009; 30: 423–431.

    Article  CAS  PubMed  Google Scholar 

  36. Miyoshi H . Gene delivery to hematopoietic stem cells using lentiviral vectors. Methods Mol Biol 2004; 246: 429–438.

    CAS  PubMed  Google Scholar 

  37. Imabayashi H, Mori T, Gojo S, Kiyono T, Sugiyama T, Irie R et al. Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp Cell Res 2003; 288: 35–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hirano H, Watanabe T . Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: application to an insoluble protein. Electrophoresis 1990; 11: 573–580.

    Article  CAS  PubMed  Google Scholar 

  39. Bader D, Masaki T, Fischman DA . Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 1982; 95: 763–770.

    Article  CAS  PubMed  Google Scholar 

  40. Saito Y, Nonaka I, Qu Z, Balkir L, van Deutekom JC, Robbins PD et al. Initiation of satellite cell replication in bupivacaine-induced myonecrosis. Acta Neuropathol (Berl) 1994; 88: 252–257.

    Article  CAS  Google Scholar 

  41. Furukawa Y, Hashimoto N, Yamakuni T, Ishida Y, Kato C, Ogashiwa M et al. Down-regulation of an ankyrin repeat-containing protein, V-1, during skeletal muscle differentiation and its re-expression in the regenerative process of muscular dystrophy. Neuromuscul Disord 2003; 13: 32–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H Miyoshi for providing lentivirus vectors. This study was supported by grants to NH and TK from the Ministry of Health, Labor and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Kiyono or N Hashimoto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiomi, K., Kiyono, T., Okamura, K. et al. CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene Ther 18, 857–866 (2011). https://doi.org/10.1038/gt.2011.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.44

Keywords

This article is cited by

Search

Quick links