Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts

Abstract

T-acute lymphoblastic leukemia (T-ALL) is characterized by several genetic alterations and poor prognosis in about 20–25% of patients. Notably, about 60% of T-ALL shows increased Notch1 activity, due to activating NOTCH1 mutations or alterations in the FBW7 gene, which confer to the cell a strong growth advantage. Therapeutic targeting of Notch signaling could be clinically relevant, especially for chemotherapy refractory patients. This study investigated the therapeutic efficacy of a novel anti-Notch1 monoclonal antibody by taking advantage of a collection of pediatric T-ALL engrafted systemically in NOD/SCID mice and genetically characterized with respect to NOTCH1/FBW7 mutations. Anti-Notch1 treatment greatly delayed engraftment of T-ALL cells bearing Notch1 mutations, including samples derived from poor responders or relapsed patients. Notably, the therapeutic efficacy of anti-Notch1 therapy was significantly enhanced in combination with dexamethasone. Anti-Notch1 treatment increased T-ALL cell apoptosis, decreased proliferation and caused strong inhibitory effects on Notch-target genes expression along with complex modulations of gene expression profiles involving cell metabolism. Serial transplantation experiments suggested that anti-Notch1 therapy could compromise leukemia-initiating cell functions. These results show therapeutic efficacy of Notch1 blockade for T-ALL, highlight the potential of combination with dexamethasone and identify surrogate biomarkers of the therapeutic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE . High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 2006; 20: 537–539.

    Article  CAS  Google Scholar 

  2. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  3. Dohda T, Maljukova A, Liu L, Heyman M, Grandér D, Brodin D et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 2007; 313: 3141–3152.

    Article  CAS  Google Scholar 

  4. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  Google Scholar 

  5. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 2006; 26: 8022–8031.

    Article  CAS  Google Scholar 

  6. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  Google Scholar 

  7. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279: 12876–12882.

    Article  CAS  Google Scholar 

  8. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 2008; 9: 377–383.

    Article  CAS  Google Scholar 

  9. van Es JH, Clevers H . Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005; 11: 496–502.

    Article  CAS  Google Scholar 

  10. Aste-Amézaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 2010; 5: e9094.

    Article  Google Scholar 

  11. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464: 1052–1057.

    Article  CAS  Google Scholar 

  12. Masiero M, Minuzzo S, Pusceddu I, Moserle L, Persano L, Agnusdei V et al. Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells. Leukemia 2011; 25: 588–598.

    Article  CAS  Google Scholar 

  13. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  Google Scholar 

  14. Aster JC, Pear WS, Blacklow SC . Notch signaling in leukemia. Annu Rev Pathol 2008; 3: 587–613.

    Article  CAS  Google Scholar 

  15. Castor A, Nilsson L, Astrand-Grundström I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  Google Scholar 

  16. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004; 104: 2919–2925.

    Article  CAS  Google Scholar 

  17. George AA, Franklin J, Kerkof K, Shah AJ, Price M, Tsark E et al. Detection of leukemic cells in the CD34(+)CD38(-) bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood 2001; 97: 3925–3930.

    Article  CAS  Google Scholar 

  18. Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A . Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 2007; 109: 674–682.

    Article  CAS  Google Scholar 

  19. Gerby B, Clappier E, Armstrong F, Deswarte C, Calvo J, Poglio S et al. Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations. Leukemia 2011; 25: 1249–1258.

    Article  CAS  Google Scholar 

  20. Chiu PP, Jiang H, Dick JE . Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 2010; 116: 5268–5279.

    Article  CAS  Google Scholar 

  21. Ma W, Gutierrez A, Goff DJ, Geron I, Sadarangani A, Jamieson CA et al. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One 2012; 7: e39725.

    Article  CAS  Google Scholar 

  22. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C et al. A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 2011; 1: 508–523.

    Article  CAS  Google Scholar 

  23. Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA . Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 2011; 118: 1579–1590.

    Article  CAS  Google Scholar 

  24. Koh HS, Lee C, Lee KS, Ham CS, Seong RH, Kim SS et al. CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-kappaB upon T-cell activation. Biochem Biophys Res Commun 2008; 370: 149–153.

    Article  CAS  Google Scholar 

  25. Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 2010; 18: 268–281.

    Article  CAS  Google Scholar 

  26. Pao W, Chmielecki J . Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 2010; 10: 760–774.

    Article  CAS  Google Scholar 

  27. Lewis HD, Leveridge M, Strack PR, Haldon CD, O'Neil J, Kim H et al. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 2007; 14: 209–219.

    Article  CAS  Google Scholar 

  28. Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia 2006; 20: 1279–1287.

    Article  CAS  Google Scholar 

  29. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  Google Scholar 

  30. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  Google Scholar 

  31. Real PJ, Ferrando AA . NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia 2009; 23: 1374–1377.

    Article  CAS  Google Scholar 

  32. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    Article  CAS  Google Scholar 

  33. Watanabe N, Murakami J, Kameda K, Kato H, Kamisaki Y, Noguchi K et al. F-18 FDG-PET imaging in adult T-cell leukemia lymphoma. Clin Nucl Med 2008; 33: 423–425.

    Article  Google Scholar 

  34. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 147–156.

    Article  CAS  Google Scholar 

  35. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  36. Sarmento LM, Barata JT . Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises. Expert Rev Anticancer Ther 2011; 11: 1403–1415.

    Article  CAS  Google Scholar 

  37. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  Google Scholar 

  38. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2013; 27: 1100–1106.

    Article  CAS  Google Scholar 

  39. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 2012; 119: 1963–1971.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E Giarin (University of Padova) for immunophenotyping the T-ALL samples used in this study, E Rossi (University of Padova) for performing microarray hybridization and V Tosello and A Ferrando (Columbia University) for genetic analysis of NOTCH1/FBW7 and critical reading of the manuscript. We also thank many people at OncoMed Pharmaceuticals who contributed to the generation and characterization of OMP-52M51, including Aaron Sato, Sasha Lazetic, Kellie Pickell and Timothy Velilla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Indraccolo.

Ethics declarations

Competing interests

FA, SS, AG and TH are employees, or former employees, and stockholders of OncoMed Pharmaceuticals. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnusdei, V., Minuzzo, S., Frasson, C. et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia 28, 278–288 (2014). https://doi.org/10.1038/leu.2013.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.183

Keywords

This article is cited by

Search

Quick links