Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia

Abstract

The GATA2 gene encodes a zinc-finger transcription factor that acts as a master regulator of normal hematopoiesis. Mutations in GATA2 have been implicated in the development of myelodysplastic syndrome and acute myeloid leukemia (AML). Using RNA sequencing we now report that GATA2 is either mutated with a functional consequence, or expressed at low levels in the majority of normal karyotype AML (NK-AML). We also show that low-GATA2-expressing specimens (GATA2low) exhibit allele-specific expression (ASE) (skewing) in more than half of AML patients examined. We demonstrate that the hypermethylation of the silenced allele can be reversed by exposure to demethylating agents, which also restores biallelic expression of GATA2. We show that GATA2low AML lack the prototypical R882 mutation in DNMT3A frequently observed in NK-AML patients and that The Cancer Genome Atlas AML specimens with DNMT3A R882 mutations are characterized by CpG hypomethylation of GATA2. Finally, we validate that several known missense single-nucleotide polymorphisms in GATA2 are actually loss-of-function variants, which, when combined with ASE, represent the equivalent of homozygous GATA2 mutations. From a broader perspective, this work suggests for the first time that determinants of ASE likely have a key role in human leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Okano M, Xie S, Li E . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19: 219–220.

    Article  CAS  PubMed  Google Scholar 

  4. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44: 23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Munker R, Nordberg ML, Veillon D, Williams BJ, Roggero A, Kern W et al. Characterization of a new myeloid leukemia cell line with normal cytogenetics (CG-SH). Leukemia Res 2009; 33: 1405–1408.

    Article  CAS  Google Scholar 

  6. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood 2012; 120: 395–403.

    Article  CAS  PubMed  Google Scholar 

  7. Tsai F-Y, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371: 221.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai F-Y, Orkin SH . Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997; 89: 3636–3643.

    CAS  PubMed  Google Scholar 

  9. Hahn CN, Chong C-E, Carmichael CL, Wilkins EJ, Brautigan PJ, Li X-C et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 2011; 43: 1012–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429: 900–903.

    Article  CAS  PubMed  Google Scholar 

  11. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW . Allelic variation in human gene expression. Science 2002; 297: 1143–1143.

    Article  CAS  PubMed  Google Scholar 

  12. Heap GA, Yang JH, Downes K, Healy BC, Hunt KA, Bockett N et al. Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Hum Mol Genet 2010; 19: 122–134.

    Article  CAS  PubMed  Google Scholar 

  13. Ng PC, Henikoff S . Predicting deleterious amino acid substitutions. Genome Res 2001; 11: 863–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sunyaev S, Ramensky V, Bork P . Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16: 198–200.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bastian M, Heymann S, Jacomy M . Gephi: An Open Source Software for Exploring and Manipulating Networks. International AAAI Conference on Weblogs and Social Media. AAAI Press: Menlo Park, CA, USA, 2009.

    Google Scholar 

  18. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E . Fast unfolding of communities in large networks. J Stat Mech 2008; 2008: P10008.

    Article  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F . Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010; 26: 2069–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leukemia Res 2010; 34: 148–153.

    Article  CAS  Google Scholar 

  22. Chen T, Ueda Y, Xie S, Li EA . Novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with activede novo methylation. J Biol Chem 2002; 277: 38746–38754.

    Article  CAS  PubMed  Google Scholar 

  23. King-Underwood L, Pritchard-Jones K . Wilms’ tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 1998; 91: 2961–2968.

    CAS  PubMed  Google Scholar 

  24. Tong Q, Tsai J, Tan G, Dalgin Gk, Hotamisligil GkS . Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005; 25: 706–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furuhata A, Murakami M, Ito H, Gao S, Yoshida K, Sobue S et al. GATA-1 and GATA-2 binding to 3' enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 2009; 23: 1270–1277.

    Article  CAS  PubMed  Google Scholar 

  26. Tong Q, Dalgin Gk XuH, Ting C-N, Leiden JM, Hotamisligil GkS . Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000; 290: 134–138.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Chellappan SP . Cloning and characterization of human DP2, a novel dimerization partner of E2F. Oncogene 1995; 10: 2085.

    CAS  PubMed  Google Scholar 

  28. Scott L, Civin C, Rorth P, Friedman A . A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992; 80: 1725–1735.

    CAS  PubMed  Google Scholar 

  29. Verstovsek S, Estey E, Manshouri T, Keating M, Kantarjian H, Giles FJ et al. High expression of the receptor tyrosine kinase Tie-1 in acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2001; 42: 511–516.

    Article  CAS  PubMed  Google Scholar 

  30. Hope KJ, Cellot S, Ting SB, MacRae T, Mayotte N, Iscove NN et al. An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 2010; 7: 101–113.

    Article  CAS  PubMed  Google Scholar 

  31. Lowry JA, Atchley WR . Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 2000; 50: 103–115.

    Article  CAS  PubMed  Google Scholar 

  32. Verhaak RGW, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    Article  CAS  PubMed  Google Scholar 

  33. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911.

    CAS  PubMed  Google Scholar 

  34. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009; 114: 144–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dang L, Jin S, Su SM . IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 2010; 16: 387–397.

    Article  CAS  PubMed  Google Scholar 

  36. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A . Widespread monoallelic expression on human autosomes. Science 2007; 318: 1136–1140.

    Article  CAS  PubMed  Google Scholar 

  37. Bonadies N, Foster SD, Chan W-I, Kvinlaug BT, Spensberger D, Dawson MA et al. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia. PloS One 2011; 6: e16330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L, Hickstein DD et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood 2013; 121: 3830–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010; 329: 643–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DeVeale B, van der Kooy D, Babak T . Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 2012; 8: e1002600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fasan A, Eder C, Haferlach C, Grossmann V, Kohlmann A, Dicker F et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia 2012; 27: 482–485.

    Article  PubMed  Google Scholar 

  42. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Jana Krosl and Josette-Renée Landry for helpful discussions and comments on the manuscript and Manish Goel, Patrick Gendron, Pierre Chagnon, Marianne Arteau and Raphaëlle Lambert for excellent technical assistance. We also wish to thank Dr Hamish Scott and the Louisiana State University Health Sciences Center at Shreveport for the generous donation of reagents and we acknowledge the TCGA for making data from their project publicly available. This research was supported by funding from the Cole Foundation and FRSQ (BTW and MC), NSERC (BTW) and Genome Quebec (BTW, SL, JH and GS). Support from the BCLQ is also gratefully acknowledged and we also wish to acknowledge the contribution of all of the courageous patients who provided samples used in this study. Correspondence and requests for materials should be addressed to BTW (brian.wilhelm@umontreal.ca).

Author contributions

BTW designed and supervised the experimental work with help from MC while MC and AF performed the experimental work presented; GG, MC and BTW analyzed the data with help from SL; MC and GG drafted the paper with revisions by BTW, GS, JH and SL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B T Wilhelm.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celton, M., Forest, A., Gosse, G. et al. Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia. Leukemia 28, 1617–1626 (2014). https://doi.org/10.1038/leu.2014.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.67

This article is cited by

Search

Quick links