Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of blood biomarkers for psychosis using convergent functional genomics

Abstract

There are to date no objective clinical laboratory blood tests for psychotic disease states. We provide proof of principle for a convergent functional genomics (CFG) approach to help identify and prioritize blood biomarkers for two key psychotic symptoms, one sensory (hallucinations) and one cognitive (delusions). We used gene expression profiling in whole blood samples from patients with schizophrenia and related disorders, with phenotypic information collected at the time of blood draw, then cross-matched the data with other human and animal model lines of evidence. Topping our list of candidate blood biomarkers for hallucinations, we have four genes decreased in expression in high hallucinations states (Fn1, Rhobtb3, Aldh1l1, Mpp3), and three genes increased in high hallucinations states (Arhgef9, Phlda1, S100a6). All of these genes have prior evidence of differential expression in schizophrenia patients. At the top of our list of candidate blood biomarkers for delusions, we have 15 genes decreased in expression in high delusions states (such as Drd2, Apoe, Scamp1, Fn1, Idh1, Aldh1l1), and 16 genes increased in high delusions states (such as Nrg1, Egr1, Pvalb, Dctn1, Nmt1, Tob2). Twenty-five of these genes have prior evidence of differential expression in schizophrenia patients. Predictive scores, based on panels of top candidate biomarkers, show good sensitivity and negative predictive value for detecting high psychosis states in the original cohort as well as in three additional cohorts. These results have implications for the development of objective laboratory tests to measure illness severity and response to treatment in devastating disorders such as schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Niculescu A, Segal D, Kuczenski R, Barrett T, Hauger R, Kelsoe J . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91.

    Article  CAS  PubMed  Google Scholar 

  2. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    Article  CAS  PubMed  Google Scholar 

  3. Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E et al. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J 2007; 7: 222–256.

    Article  CAS  PubMed  Google Scholar 

  4. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 129–158.

    Article  CAS  PubMed  Google Scholar 

  5. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2009; 14: 156–174.

    Article  CAS  PubMed  Google Scholar 

  6. Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M et al. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 12–25.

    Article  Google Scholar 

  7. Morrison JL, Breitling R, Higham DJ, Gilbert DR . GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 2005; 6: 233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Le-Niculescu H, McFarland MJ, Mamidipalli S, Ogden CA, Kuczenski R, Kurian SM et al. Convergent functional genomics of bipolar disorder: from animal model pharmacogenomics to human genetics and biomarkers. Neurosci Biobehav Rev 2007; 31: 897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  PubMed  Google Scholar 

  10. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653–15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006; 11, 615, 663–679.

    Article  CAS  Google Scholar 

  12. Niculescu AB, Lulow LL, Ogden CA, Le-Niculescu H, Salomon DR, Schork NJ et al. PhenoChipping of psychotic disorders: a novel approach for deconstructing and quantitating psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 653–662.

    Article  Google Scholar 

  13. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT et al. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 155–181.

    Article  CAS  PubMed  Google Scholar 

  14. Niculescu 3rd AB . Polypharmacy in oligopopulations: what psychiatric genetics can teach biological psychiatry. Psychiatr Genet 2006; 16: 241–244.

    Article  PubMed  Google Scholar 

  15. Glatt SJ, Faraone SV, Lasky-Su JA, Kanazawa T, Hwu HG, Tsuang MT . Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Mol Psychiatry 2008; 14: 885–893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry 2008; 64: 419–427.

    Article  CAS  PubMed  Google Scholar 

  17. Goes FS, Willour VL, Zandi PP, Belmonte PL, Mackinnon DF, Mondimore FM et al. Family-based association study of Neuregulin 1 with psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 693–702.

    Article  CAS  PubMed  Google Scholar 

  18. Serretti A, Lattuada E, Lorenzi C, Lilli R, Smeraldi E . Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses. Mol Psychiatry 2000; 5: 270–274.

    Article  CAS  PubMed  Google Scholar 

  19. Spalletta G, Bernardini S, Bellincampi L, Federici G, Trequattrini A, Caltagirone C . Delusion symptoms are associated with ApoE epsilon4 allelic variant at the early stage of Alzheimer's disease with late onset. Eur J Neurol 2006; 13: 176–182.

    Article  CAS  PubMed  Google Scholar 

  20. Dean B, Digney A, Sundram S, Thomas E, Scarr E . Plasma apolipoprotein E is decreased in schizophrenia spectrum and bipolar disorder. Psychiatry Res 2008; 158: 75–78.

    Article  CAS  PubMed  Google Scholar 

  21. Maloney B, Ge YW, Petersen RC, Hardy J, Rogers JT, Perez-Tur J et al. Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: differential effects in neuronal cells and on DNA-protein interactions. Am J Med Genet B Neuropsychiatr Genet, (2011) 16, –;, 5 June 2009; e-pub ahead of print.

  22. Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey RJ et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. Embo J 2007; 26: 3888–3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ et al. ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 2008; 45: 100–105.

    Article  CAS  PubMed  Google Scholar 

  24. Anthony TE, Heintz N . The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 2007; 500: 368–383.

    Article  CAS  PubMed  Google Scholar 

  25. Mahadik SP, Mukherjee S, Wakade CG, Laev H, Reddy RR, Schnur DB . Decreased adhesiveness and altered cellular distribution of fibronectin in fibroblasts from schizophrenic patients. Psychiatry Res 1994; 53: 87–97.

    Article  CAS  PubMed  Google Scholar 

  26. Miyamae Y, Nakamura Y, Kashiwagi Y, Tanaka T, Kudo T, Takeda M . Altered adhesion efficiency and fibronectin content in fibroblasts from schizophrenic patients. Psychiatry Clin Neurosci 1998; 52: 345–352.

    Article  CAS  PubMed  Google Scholar 

  27. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A . Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008; 28: 9239–9248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun D, Stuart GW, Jenkinson M, Wood SJ, McGorry PD, Velakoulis D et al. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 2008; 14: 976–986.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2008; 14: 156–174.

    Article  CAS  PubMed  Google Scholar 

  30. Shirts BH, Wood J, Yolken RH, Nimgaonkar VL . Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity. Am J Med Genet B Neuropsychiatr Genet 2008; 147: 343–350.

    Article  PubMed  CAS  Google Scholar 

  31. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004; 161: 889–895.

    Article  PubMed  Google Scholar 

  32. Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC . Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophrenia Res 2002; 57: 247–258.

    Article  Google Scholar 

  33. Garcia-Bueno B, Caso JR, Leza JC . Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008; 32: 1136–1151.

    Article  CAS  PubMed  Google Scholar 

  34. Lau CG, Zukin RS . NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev 2007; 8: 413–426.

    Article  CAS  Google Scholar 

  35. Kanakry CG, Li Z, Nakai Y, Sei Y, Weinberger DR . Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer. PLoS ONE 2007; 2: e1369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schonfeldt-Lecuona C, Freudenmann RW, Tumani H, Kassubek J, Connemann BJ . Acute psychosis with a mediastinal carcinoma metastasis. Med Sci Monit 2005; 11: CS6–CS8.

    PubMed  Google Scholar 

  37. Wei Z, Qi J, Dai Y, Bowen WD, Mousseau DD . Haloperidol disrupts Akt signalling to reveal a phosphorylation-dependent regulation of pro-apoptotic Bcl-XS function. Cell Signalling 2009; 21: 161–168.

    Article  CAS  PubMed  Google Scholar 

  38. Riedel M, Strassnig M, Schwarz MJ, Muller N . COX-2 inhibitors as adjunctive therapy in schizophrenia: rationale for use and evidence to date. CNS Drugs 2005; 19: 805–819.

    Article  CAS  PubMed  Google Scholar 

  39. Laan W, Smeets H, de Wit NJ, Kahn RS, Grobbee DE, Burger H . Glucocorticosteroids associated with a decreased risk of psychosis. J Clin Psychopharmacol 2009; 29: 288–290.

    Article  CAS  PubMed  Google Scholar 

  40. Peet M . Omega-3 polyunsaturated fatty acids in the treatment of schizophrenia. Israel J Psychiatry Relat Sci 2008; 45: 19–25.

    Google Scholar 

  41. Huang JT, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 2008; 13: 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  42. Sawa A, Cascella NG . Peripheral olfactory system for clinical and basic psychiatry: a promising entry point to the mystery of brain mechanism and biomarker identification in schizophrenia. Am J Psychiatry 2009; 166: 137–139.

    Article  PubMed  Google Scholar 

  43. Kato T, Iwayama Y, Kakiuchi C, Iwamoto K, Yamada K, Minabe Y et al. Gene expression and association analyses of LIM (PDLIM5) in bipolar disorder and schizophrenia. Mol Psychiatry 2005; 10: 1045–1055.

    Article  CAS  PubMed  Google Scholar 

  44. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 129–158.

    Article  CAS  Google Scholar 

  45. Paunio T, Tuulio-Henriksson A, Hiekkalinna T, Perola M, Varilo T, Partonen T et al. Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Hum Mol Genet 2004; 13: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Choi KH, Baykiz AF, Gershenfeld HK . Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genomics 2007; 8: 413.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W . Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 2004; 67: 41–52.

    Article  PubMed  Google Scholar 

  49. Bowden NA, Weidenhofer J, Scott RJ, Schall U, Todd J, Michie PT et al. Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia Res 2006; 82: 175–183.

    Article  Google Scholar 

  50. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dean B, Pavey G, Scarr E, Goeringer K, Copolov DL . Measurement of dopamine D2-like receptors in postmortem CNS and pituitary: differential regional changes in schizophrenia. Life Sci 2004; 74: 3115–3131.

    Article  CAS  PubMed  Google Scholar 

  52. Seeman P, Guan HC, Nobrega J, Jiwa D, Markstein R, Balk JH et al. Dopamine D2-like sites in schizophrenia, but not in Alzheimer's, Huntington's, or control brains, for [3 H]benzquinoline. Synapse 1997; 25: 137–146.

    Article  CAS  PubMed  Google Scholar 

  53. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  PubMed  Google Scholar 

  54. Zvara A, Szekeres G, Janka Z, Kelemen JZ, Cimmer C, Santha M et al. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers. Dis Markers 2005; 21: 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z . Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1173–1181.

    Article  PubMed  Google Scholar 

  56. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  57. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 2815–2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS . Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol Psychiatry 1997; 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  59. Devlin B, Bacanu SA, Roeder K, Reimherr F, Wender P, Galke B et al. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 2002; 7: 689–694.

    Article  CAS  PubMed  Google Scholar 

  60. Smalla KH, Mikhaylova M, Sahin J, Bernstein HG, Bogerts B, Schmitt A et al. A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol Psychiatry 2008; 13: 878–896.

    Article  CAS  PubMed  Google Scholar 

  61. Faraone SV, Lasky-Su J, Glatt SJ, Van Eerdewegh P, Tsuang MT . Early onset bipolar disorder: possible linkage to chromosome 9q34. Bipolar Disord 2006; 8: 144–151.

    Article  CAS  PubMed  Google Scholar 

  62. Kampman O, Anttila S, Illi A, Mattila KM, Rontu R, Leinonen E et al. Apolipoprotein E polymorphism is associated with age of onset in schizophrenia. J Hum Genet 2004; 49: 355–359.

    Article  CAS  PubMed  Google Scholar 

  63. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

    Article  CAS  PubMed  Google Scholar 

  64. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374, 328.

    Article  CAS  PubMed  Google Scholar 

  65. Chagnon YC, Roy MA, Bureau A, Merette C, Maziade M . Differential RNA expression between schizophrenic patients and controls of the dystrobrevin binding protein 1 and neuregulin 1 genes in immortalized lymphocytes. Schizophrenia Res 2008; 100: 281–290.

    Article  CAS  Google Scholar 

  66. Zhang HX, Zhao JP, Lv LX, Li WQ, Xu L, Ouyang X et al. Explorative study on the expression of neuregulin-1 gene in peripheral blood of schizophrenia. Neurosci Lett 2008; 438: 1–5.

    Article  CAS  PubMed  Google Scholar 

  67. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  68. Chiu YF, McGrath JA, Thornquist MH, Wolyniec PS, Nestadt G, Swartz KL et al. Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosome 8p and 14q. Mol Psychiatry 2002; 7: 658–664.

    Article  CAS  PubMed  Google Scholar 

  69. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pulver AE, Mulle J, Nestadt G, Swartz KL, Blouin JL, Dombroski B et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry 2000; 5: 650–653.

    Article  CAS  PubMed  Google Scholar 

  71. Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C et al. Genomewide linkage scan of 409 European-Ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample. Am J Hum Genet 2006; 78: 315–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  73. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 62: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  75. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  76. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 459–470, 423.

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi S, Faraone SV, Lasky-Su J, Tsuang MT . Genome-wide scan of homogeneous subtypes of NIMH genetics initiative schizophrenia families. Psychiatry Res 2005; 133: 111–122.

    Article  CAS  PubMed  Google Scholar 

  78. Cardno AG, Holmans PA, Rees MI, Jones LA, McCarthy GM, Hamshere ML et al. A genomewide linkage study of age at onset in schizophrenia. Am J Med Genet 2001; 105: 439–445.

    Article  CAS  PubMed  Google Scholar 

  79. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood 3rd WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  PubMed  Google Scholar 

  80. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS ONE 2008; 3: e3625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    Article  CAS  PubMed  Google Scholar 

  82. McInnes LA, Lauriat TL . RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev 2006; 30: 551–561.

    Article  CAS  PubMed  Google Scholar 

  83. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet 2003; 73: 601–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Benes FM, Lim B, Matzilevich D, Subburaju S, Walsh JP . Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc Natl Acad Sci USA 2008; 105: 20935–20940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science (New York, NY) 2008; 320: 539–543.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from INGEN (Indiana Genomics Initiative of Indiana University), INBRAIN (Indiana Center for Biomarker Research In Neuropsychiatry) and NARSAD Young Investigator Award to ABN, as well as NIMH R01 MH071912–01 to MTT and ABN. ABN would like to thank Howard Edenberg for excellent help and advice with animal model microarray data, as well as Sudharani Mamidipalli, Griffin Fitzgerald and Jesse Townes for their precise work with database maintenance and data analysis. Most importantly, we would like to thank the subjects who participated in these studies, their families and their caregivers. Without their generous participation, such work to advance the understanding of mental illness would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B Niculescu.

Ethics declarations

Competing interests

ABN and DRS are founders and hold an equity interest in Mindscape Diagnostics, Inc. MAG holds an equity interest in San Diego Instruments, Inc.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurian, S., Le-Niculescu, H., Patel, S. et al. Identification of blood biomarkers for psychosis using convergent functional genomics. Mol Psychiatry 16, 37–58 (2011). https://doi.org/10.1038/mp.2009.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.117

Keywords

This article is cited by

Search

Quick links