Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The APOE ɛ4 allele modulates brain white matter integrity in healthy adults

Abstract

The Apolipoprotein E (APOE) ɛ4 allele is the best-established genetic risk factor for sporadic Alzheimer's disease, and is also associated with structural gray matter and functional brain changes in healthy young, middle-aged and elderly subjects. Because APOE is implicated in brain mechanisms associated with white matter (WM) development and repair, we investigated the potential role played by the APOE polymorphism on WM structure in healthy younger (aged 20–35 years) and older (aged 50–78 years) adults using diffusion tensor imaging. General reduction of fractional anisotropy and increase in mean diffusivity values was found in carriers of the APOE ɛ4 allele relative to non-carriers. No significant interactions between genotype and age were observed, suggesting that differences in WM structure between APOE ɛ4-carriers and non-carriers do not undergo significant differential changes with age. This result was not explained by differences in brain morphology or cognitive measures. The APOE ɛ4 allele modulates brain WM structure before any clinical or neurophysiological expression of impending disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mahley RW, Weisgraber KH, Huang Y . Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res 2009; 50 (Suppl): S183–S188.

    Article  Google Scholar 

  2. Mahley RW, Rall SC . Apolipoprotein E: far more than a lipid transport protein. Annual review of genomics and human genetics 2000; 1: 507–537.

    Article  CAS  Google Scholar 

  3. Bu G . Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nature Reviews Neuroscience 2009; 10: 333–344.

    Article  CAS  Google Scholar 

  4. Okuizumi K, Onodera O, Tanaka H, Kobayashi H, Tsuji S, Takahashi H et al. ApoE-epsilon 4 and early-onset Alzheimer's. Nat Genet 1994; 7: 10–11.

    Article  CAS  Google Scholar 

  5. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    Article  CAS  Google Scholar 

  6. Teasdale GM, Nicoll JA, Murray G, Fiddes M . Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997; 350: 1069–1071.

    Article  CAS  Google Scholar 

  7. Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF et al. Cognitive change and the APOE epsilon 4 allele. Nature 2002; 418: 932.

    Article  CAS  Google Scholar 

  8. Lehtovirta M, Laakso M, Soininen H, Helisalmi S, Mannermaa A, Helkala E et al. Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Neuroscience 1995; 67: 65–72.

    Article  CAS  Google Scholar 

  9. Cosentino S, Scarmeas N, Helzner E, Glymour M, Brandt J, Albert M et al. APOE epsilon 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 2008; 70: 1842–1849.

    Article  CAS  Google Scholar 

  10. Filippini N, Rao A, Wetten S, Gibson RA, Borrie M, Guzman D et al. Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer's disease. Neuroimage 2009; 44: 724–728.

    Article  Google Scholar 

  11. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC et al. Patterns of brain activation in people at risk for Alzheimer's disease. NEnglJ Med 2000; 343: 450–456.

    Article  CAS  Google Scholar 

  12. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 6037–6042.

    Article  CAS  Google Scholar 

  13. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 2004; 101: 284–289.

    Article  CAS  Google Scholar 

  14. Bondi MW, Houston WS, Eyler LT, Brown GG . fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005; 64: 501–508.

    Article  Google Scholar 

  15. Wishart HA, Saykin AJ, Rabin LA, Santulli RB, Flashman LA, Guerin SJ et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. AmJ Psychiatry 2006; 163: 1603–1610.

    Article  Google Scholar 

  16. Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease. Neurology 1999; 52: 91–100.

    Article  CAS  Google Scholar 

  17. Du AT, Schuff N, Chao LL, Kornak J, Jagust WJ, Kramer JH et al. Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiol Aging 2006; 27: 733–740.

    Article  Google Scholar 

  18. Barboriak DP, Doraiswamy PM, Krishnan KR, Vidyarthi S, Sylvester J, Charles HC . Hippocampal sulcal cavities on MRI: relationship to age and apolipoprotein E genotype. Neurology 2000; 54: 2150–2153.

    Article  CAS  Google Scholar 

  19. den Heijer T, Oudkerk M, Launer LJ, van Duijn CM, Hofman A, Breteler MM . Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes. Neurology 2002; 59: 746–748.

    Article  CAS  Google Scholar 

  20. Wishart HA, Saykin AJ, McAllister TW, Rabin LA, McDonald BC, Flashman LA et al. Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology 2006; 67: 1221–1224.

    Article  CAS  Google Scholar 

  21. Burggren AC, Zeineh MM, Ekstrom AD, Braskie MN, Thompson PM, Small GW et al. Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. Neuroimage 2008; 41: 1177–1183.

    Article  CAS  Google Scholar 

  22. Shaw P, Lerch JP, Pruessner JC, Taylor KN, Rose AB, Greenstein D et al. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol 2007; 6: 494–500.

    Article  CAS  Google Scholar 

  23. Schmidt H, Schmidt R, Fazekas F, Semmler J, Kapeller P, Reinhart B et al. Apolipoprotein E e4 allele in the normal elderly: neuropsychologic and brain MRI correlates. Clin Genet 1996; 50: 293–299.

    Article  CAS  Google Scholar 

  24. Reiman EM, Uecker A, Caselli RJ, Lewis S, Bandy D, de Leon MJ et al. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer's disease. Ann Neurol 1998; 44: 288–291.

    Article  CAS  Google Scholar 

  25. Cherbuin N, Anstey KJ, Sachdev PS, Maller JJ, Meslin C, Mack HA et al. Total and regional gray matter volume is not related to APOE*E4 status in a community sample of middle-aged individuals. J Gerontol A Biol Sci Med Sci 2008; 63: 501–504.

    Article  Google Scholar 

  26. Mondadori CR, de Quervain DJ, Buchmann A, Mustovic H, Wollmer MA, Schmidt CF et al. Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cereb Cortex 2007; 17: 1934–1947.

    Article  Google Scholar 

  27. Lind J, Persson J, Ingvar M, Larsson A, Cruts M, Van Broeckhoven C et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain 2006; 129: 1240–1248.

    Article  Google Scholar 

  28. Burggren A, Small G, Sabb F, Bookheimer S . Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry 2002; 10: 44–51.

    Article  Google Scholar 

  29. Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J . Pattern of brain destruction in Parkinson's and Alzheimer's diseases. J Neural Transm 1996; 103: 455–490.

    Article  CAS  Google Scholar 

  30. Mahley RW . Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–630.

    Article  CAS  Google Scholar 

  31. Snipes G, Suter U In: Bittman R (ed). Subcellular Biochemistry, vol. 28. Plenum Press: New York, 1997 pp 173–204.

    Google Scholar 

  32. Han X . Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. J Neurochem 2007; 103 (Suppl 1): 171–179.

    Article  CAS  Google Scholar 

  33. Rose S, Chen F, Chalk J, Zelaya F, Strugnell W, Benson M et al. Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatry 2000; 69: 528–530.

    Article  CAS  Google Scholar 

  34. Duan JH, Wang HQ, Xu J, Lin X, Chen SQ, Kang Z et al. White matter damage of patients with Alzheimer's disease correlated with the decreased cognitive function. Surg Radiol Anat 2006; 28: 150–156.

    Article  Google Scholar 

  35. Ferrarini L, Palm WM, Olofsen H, van der Landen R, Jan Blauw G, Westendorp RG et al. MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease. Neuroimage 2008; 39: 1832–1838.

    Article  Google Scholar 

  36. Johansen-Berg H, Behrens TE . Diffusion MRI: From Quantitative Measurement to in vivo Neuroanatomy. Academic Press: London, 2009.

    Google Scholar 

  37. Stebbins G, Murphy C . Diffusion tensor imaging in Alzheimer's disease and mild cognitive impairment. Behav Neurol 2009; 21: 39–49.

    Article  CAS  Google Scholar 

  38. Nierenberg J, Pomara N, Hoptman MJ, Sidtis JJ, Ardekani BA, Lim KO . Abnormal white matter integrity in healthy apolipoprotein E epsilon4 carriers. Neuroreport 2005; 16: 1369–1372.

    Article  CAS  Google Scholar 

  39. Persson J, Lind J, Larsson A, Ingvar M, Cruts M, Van Broeckhoven C et al. Altered brain white matter integrity in healthy carriers of the APOE epsilon4 allele: a risk for AD? Neurology 2006; 66: 1029–1033.

    Article  CAS  Google Scholar 

  40. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487–1505.

    Article  Google Scholar 

  41. Head D, Buckner R, Shimony J, Williams L, Akbudak E, Conturo T et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 2004; 14: 410–423.

    Article  Google Scholar 

  42. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 2005; 26: 1215–1227.

    Article  CAS  Google Scholar 

  43. Ardekani S, Kumar A, Bartzokis G, Sinha U . Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn Reson Imaging 2007; 25: 154–167.

    Article  Google Scholar 

  44. Pagani E, Agosta F, Rocca MA, Caputo D, Filippi M . Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage 2008; 41: 657–667.

    Article  Google Scholar 

  45. Bozzali M, Filippi M, Magnani G, Cercignani M, Franceschi M, Schiatti E et al. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology 2006; 67: 453–460.

    Article  CAS  Google Scholar 

  46. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges J . The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 2006; 21: 1078–1085.

    Article  Google Scholar 

  47. Behrens T, Woolrich M, Jenkinson M, Johansen-Berg H, Nunes R, Clare S et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003; 50: 1077–1088.

    Article  CAS  Google Scholar 

  48. Beaulieu C . The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 2002; 15: 435–455.

    Article  Google Scholar 

  49. Zhang Y, Brady M, Smith S . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45–57.

    Article  CAS  Google Scholar 

  50. Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J et al. Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 2007; 130: 2375–2386.

    Article  Google Scholar 

  51. Patenaude B, Smith S, Kennedy D, Jenkinson M . Bayesian statistical models of shape and appearance for subcortical brain segmentation, FMRIB Technical Report TR07BP1 FMRIB: Oxford, 2007, pp 1–23.

    Google Scholar 

  52. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 2009; 106: 7209–7214.

    Article  CAS  Google Scholar 

  53. Honea R, Vidoni E, Harsha A, Burns J . Impact of APOE on the Healthy Aging Brain: A Voxel-Based MRI and DTI Study. J Alzheimer's Disease 2009; 18: 553–564.

    Article  Google Scholar 

  54. Smith CD, Chebrolu H, Andersen AH, Powell DA, Lovell MA, Xiong S et al. White matter diffusion alterations in normal women at risk of Alzheimer's disease. Neurobiol Aging 2008; Sep: 16.

  55. Bendlin BB, Ries ML, Canu E, Sodhi A, Lazar M, Alexander AL et al. White matter is altered with parental family history of Alzheimer's Disease. Alzheimers Dement 2010 in press.

  56. Appel J, Potter E, Bhatia N, Shen Q, Zhao W, Greig MT et al. Association of white matter hyperintensity measurements on brain MR imaging with cognitive status, medial temporal atrophy, and cardiovascular risk factors. AJNR Am J Neuroradiol 2009; 30: 1870–1876.

    Article  CAS  Google Scholar 

  57. Burton EJ, McKeith IG, Burn DJ, Firbank MJ, O'Brien JT . Progression of white matter hyperintensities in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia: a comparison with normal aging. Am J Geriatr Psychiatry 2006; 14: 842–849.

    Article  Google Scholar 

  58. De Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 2002; 52: 335–341.

    Article  Google Scholar 

  59. Godin O, Tzourio C, Maillard P, Alperovitch A, Mazoyer B, Dufouil C . Apolipoprotein E Genotype is related to progression of white matter lesion load. Stroke 2009; 40: 3186–3190.

    Article  CAS  Google Scholar 

  60. Paternoster L, Chen W, Sudlow CL . Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects. Stroke 2009; 40: 2020–2026.

    Article  Google Scholar 

  61. McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler Jr DJ, Holland D et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 2009; 73: 457–465.

    Article  CAS  Google Scholar 

  62. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE . Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009; 30: 3127–3141.

    Article  Google Scholar 

  63. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE . Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994; 264: 850–852.

    Article  CAS  Google Scholar 

  64. Mahley RW, Nathan BP, Bellosta S, Pitas RE . Apolipoprotein E: impact of cytoskeletal stability in neurons and the relationship to Alzheimer's disease. Curr Opin Lipidol 1995; 6: 86–91.

    Article  CAS  Google Scholar 

  65. Nathan B, Chang K, Bellosta S, Brisch E, Ge N, Mahley R et al. The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 1995; 270: 19791–19799.

    Article  CAS  Google Scholar 

  66. Tesseur I, Van Dorpe J, Bruynseels K, Bronfman F, Sciot R, Van Lommel A et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol 2000; 157: 1495–1510.

    Article  CAS  Google Scholar 

  67. Yu C, Seltman H, Peskind E, Galloway N, Zhou P, Rosenthal E et al. Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer's disease: patterns of linkage disequilibrium and disease/marker association. Genomics 2007; 89: 655–665.

    Article  CAS  Google Scholar 

  68. Scacchi R, Gambina G, Ruggeri M, Martini MC, Ferrari G, Silvestri M et al. Plasma levels of apolipoprotein E and genetic markers in elderly patients with Alzheimer's disease. Neurosci Lett 1999; 259: 33–36.

    Article  CAS  Google Scholar 

  69. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease. Pharmacogenomics J; 22 December 2009; e-pub ahead of print.

  70. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS One 2009; 4: e6501.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof Jonathan Flint and Amarjit Bhorma, Wellcome Trust Centre for Human Genetics, for genotyping the APOE data. VH was supported by the Alzheimer's Research Trust (English Charity Register: 1077089) and the German National Academic Foundation (Studienstiftung des deutschen Volkes), NF by the Gordon Edward Small's Charitable Trust (Scottish Charity Register: SC008962).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Mackay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heise, V., Filippini, N., Ebmeier, K. et al. The APOE ɛ4 allele modulates brain white matter integrity in healthy adults. Mol Psychiatry 16, 908–916 (2011). https://doi.org/10.1038/mp.2010.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.90

Keywords

This article is cited by

Search

Quick links