Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia

Abstract

Bipolar disorder and schizophrenia are two often severe disorders with high heritabilities. Recent studies have demonstrated a large overlap of genetic risk loci between these disorders but diagnostic and molecular distinctions still remain. Here, we perform a combined genome-wide association study (GWAS) of 19 779 bipolar disorder (BP) and schizophrenia (SCZ) cases versus 19 423 controls, in addition to a direct comparison GWAS of 7129 SCZ cases versus 9252 BP cases. In our case–control analysis, we identify five previously identified regions reaching genome-wide significance (CACNA1C, IFI44L, MHC, TRANK1 and MAD1L1) and a novel locus near PIK3C2A. We create a polygenic risk score that is significantly different between BP and SCZ and show a significant correlation between a BP polygenic risk score and the clinical dimension of mania in SCZ patients. Our results indicate that first, combining diseases with similar genetic risk profiles improves power to detect shared risk loci and second, that future direct comparisons of BP and SCZ are likely to identify loci with significant differential effects. Identifying these loci should aid in the fundamental understanding of how these diseases differ biologically. These findings also indicate that combining clinical symptom dimensions and polygenic signatures could provide additional information that may someday be used clinically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    PubMed  PubMed Central  Google Scholar 

  2. Craddock N, Sklar P . Genetics of bipolar disorder: successful start to a long journey. Trends Genet 2009; 25: 99–105.

    Article  CAS  PubMed  Google Scholar 

  3. Kraepelin E, Diefendorf AR . Clin Psychiatry. The Macmillan Company: New York, London, 1907 xvii, pp 562.

    Google Scholar 

  4. Kasanin J . The acute schizoaffective psychoses. 1933. Am J Psychiatry 1994; 151 (6 Suppl): 144–154.

    CAS  PubMed  Google Scholar 

  5. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993; 50: 527–540.

    Article  CAS  PubMed  Google Scholar 

  6. Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. Arch Gen Psychiatry 1993; 50: 871–883.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuang MT, Winokur G, Crowe RR . Morbidity risks of schizophrenia and affective disorders among first degree relatives of patients with schizophrenia, mania, depression and surgical conditions. British J Psychiatry: J Mental Sci 1980; 137: 497–504.

    Article  CAS  Google Scholar 

  8. Mortensen PB, Pedersen CB, Melbye M, Mors O, Ewald H . Individual and familial risk factors for bipolar affective disorders in Denmark. Arch Gen Psychiatry 2003; 60: 1209–1215.

    Article  PubMed  Google Scholar 

  9. Maier W, Lichtermann D, Franke P, Heun R, Falkai P, Rietschel M . The dichotomy of schizophrenia and affective disorders in extended pedigrees. Schizophr Res 2002; 57: 259–266.

    Article  PubMed  Google Scholar 

  10. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  11. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P . A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159: 539–545.

    Article  PubMed  Google Scholar 

  12. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  13. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2010; 16: 429–441.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013.

  15. Kendler KS, McGuire M, Gruenberg AM, Walsh D . Examining the validity of DSM-III-R schizoaffective disorder and its putative subtypes in the Roscommon Family Study. Am J Psychiatry 1995; 152: 755–764.

    Article  CAS  PubMed  Google Scholar 

  16. Hamshere ML, O'Donovan MC, Jones IR, Jones L, Kirov G, Green EK et al. Polygenic dissection of the bipolar phenotype. Br J Psychiatry: J Mental Sci 2011; 198: 284–288.

    Article  CAS  Google Scholar 

  17. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genetics 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  18. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genetics 2011; 43: 977–983.

    Article  CAS  Google Scholar 

  19. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genetics 2009; 41: 334–341.

    Article  CAS  PubMed  Google Scholar 

  21. Browning BL, Browning SR . A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009; 84: 210–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fanous AH, Kendler KS . Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry 2005; 10: 6–13.

    Article  CAS  PubMed  Google Scholar 

  25. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness—development and reliability of the opcrit system. Arch Gen Psychiatry 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  26. Kay SR, Fiszbein A, Opler LA . The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–276.

    Article  CAS  PubMed  Google Scholar 

  27. Levinson DF, Mowry BJ, Escamilla MA, Faraone SV . The Lifetime Dimensions of Psychosis Scale (LDPS): description and interrater reliability. Schizophr Bull 2002; 28: 683–695.

    Article  PubMed  Google Scholar 

  28. Fanous AH, Zhou B, Aggen SH, Bergen SE, Amdur RL, Duan J et al. Genome-wide association study of clinical dimensions of schizophrenia: polygenic effect on disorganized symptoms. Am J Psychiatry 2012; 169: 1309–1317.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andreasen NC, Flaum M, Arndt S . The Comprehensive assessment of symptoms and history (CASH). An instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 1992; 49: 615–623.

    Article  CAS  PubMed  Google Scholar 

  30. Boks MP, Leask S, Vermunt JK, Kahn RS . The structure of psychosis revisited: the role of mood symptoms. Schizophr Res 2007; 93: 178–185.

    Article  PubMed  Google Scholar 

  31. Spitzer R, Endicott J, Robins E . Research Diagnostic Criteria for a selected group of functional disorders 3rd edn. State Psychiatric Institute: New York, NY, USA, 1978.

    Google Scholar 

  32. Spitzer RL, Williams JB, Gibbon M, First MB . The Structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description. Arch Gen Psychiatry 1992; 49: 624–629.

    Article  CAS  PubMed  Google Scholar 

  33. Spitzer R, Endicott J . The Schedule for Affective Disorders and Schizophrenia, Lifetime Version 3rd edn. State Psychiatric Institute: New York, NY, USA, 1977.

    Google Scholar 

  34. Nurnberger JI Jr, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 1994; 51: 849–859, discussion 863–864.

    Article  PubMed  Google Scholar 

  35. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59 (Suppl 20): 22–33, quiz 4-57.

    PubMed  Google Scholar 

  36. Sachs GS . Use of clonazepam for bipolar affective disorder. J Clin Psychiatry 1990; 51 (Suppl): 31–34, discussion 50-53.

    PubMed  Google Scholar 

  37. Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R et al. SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    Article  CAS  PubMed  Google Scholar 

  38. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genetics 2011; 43: 977–983.

  39. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genetics 2008; 40: 1056–1058.

    Article  CAS  PubMed  Google Scholar 

  40. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2012; 18: 708–712.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2013; 18: 195–205.

    Article  CAS  PubMed  Google Scholar 

  42. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 2013; 9: 4.

    Article  Google Scholar 

  43. Gavaghan DJ, Moore RA, McQuay HJ . An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data. Pain 2000; 85: 415–424.

    Article  CAS  PubMed  Google Scholar 

  44. Ruderfer DM, Kirov G, Chambert K, Moran JL, Owen MJ, O'Donovan MC et al. A family-based study of common polygenic variation and risk of schizophrenia. Mol Psychiatry 2011; 16: 887–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pope HG Jr., Lipinski JF Jr. . Diagnosis in schizophrenia and manic-depressive illness: a reassessment of the specificity of 'schizophrenic' symptoms in the light of current research. Arch Gen Psychiatry 1978; 35: 811–828.

    Article  PubMed  Google Scholar 

  46. Ballenger JC, Reus VI, Post RM . The ‘atypical’ clinical picture of adolescent mania. Am J Psychiatry 1982; 139: 602–606.

    Article  CAS  PubMed  Google Scholar 

  47. Berk M, Hallam KT, McGorry PD . The potential utility of a staging model as a course specifier: a bipolar disorder perspective. J Affect Disord 2007; 100: 279–281.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to P Sklar or K S Kendler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruderfer, D., Fanous, A., Ripke, S. et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry 19, 1017–1024 (2014). https://doi.org/10.1038/mp.2013.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.138

Keywords

This article is cited by

Search

Quick links