Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mast cells' involvement in inflammation pathways linked to depression: evidence in mastocytosis

Abstract

Converging sources of evidence point to a role for inflammation in the development of depression, fatigue and cognitive dysfunction. More precisely, the tryptophan (TRP) catabolism is thought to play a major role in inflammation-induced depression. Mastocytosis is a rare disease in which chronic symptoms, including depression, are related to mast cell accumulation and activation. Our objectives were to study the correlations between neuropsychiatric features and the TRP catabolism pathway in mastocytosis in order to demonstrate mast cells' potential involvement in inflammation-induced depression. Fifty-four patients with mastocytosis and a mean age of 50.1 years were enrolled in the study and compared healthy age-matched controls. Depression and stress were evaluated with the Beck Depression Inventory revised and the Perceived Stress Scale. All patients had measurements of TRP, serotonin (5-HT), kynurenine (KYN), indoleamine 2,3-dioxygenase 1 (IDO1) activity (ratio KYN/TRP), kynurenic acid (KA) and quinolinic acid (QA). Patients displayed significantly lower levels of TRP and 5-HT without hypoalbuminemia or malabsorption, higher IDO1 activity, and higher levels of KA and QA, with an imbalance towards the latter. High perceived stress and high depression scores were associated with low TRP and high IDO1 activity. In conclusion, TRP metabolism is altered in mastocytosis and correlates with perceived stress and depression, demonstrating mast cells' involvement in inflammation pathways linked to depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Haroon E, Raison CL, Miller AH . Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2012; 37: 137–162.

    Article  CAS  Google Scholar 

  2. Dantzer R, Heijnen CJ, Kavelaars A, Laye S, Capuron L . The neuroimmune basis of fatigue. Trends Neurosci 2014; 37: 39–46.

    Article  CAS  Google Scholar 

  3. Capuron L, Miller AH . Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 2011; 130: 226–238.

    Article  CAS  Google Scholar 

  4. Maes M, Berk M, Goehler L, Song C, Anderson G, Gałecki P et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012; 10: 66.

    Article  CAS  Google Scholar 

  5. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW . From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56.

    Article  CAS  Google Scholar 

  6. Miller AH . Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav Immun 2009; 23: 149–158.

    Article  CAS  Google Scholar 

  7. Hoyo-Becerra C, Schlaak JF, Hermann DM . Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation. Brain Behav Immun 2014; 42C: 222–231.

    Article  Google Scholar 

  8. Maes M . Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 664–675.

    Article  CAS  Google Scholar 

  9. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014; 19: 699–709.

    Article  CAS  Google Scholar 

  10. Prinz M, Priller J . Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15: 300–312.

    Article  CAS  Google Scholar 

  11. Skaper SD, Facci L, Giusti P . Mast cells, glia and neuroinflammation: partners in crime? Immunology 2014; 141: 314–327.

    Article  CAS  Google Scholar 

  12. Silver R, Curley JP . Mast cells on the mind: new insights and opportunities. Trends Neurosci 2013; 36: 513–521.

    Article  CAS  Google Scholar 

  13. Nelissen S, Lemmens E, Geurts N, Kramer P, Maurer M, Hendriks J et al. The role of mast cells in neuroinflammation. Acta Neuropathol (Berl) 2013; 125: 637–650.

    Article  CAS  Google Scholar 

  14. Frenzel L, Hermine O . Mast cells and inflammation. Jt Bone Spine Rev Rhum 2013; 80: 141–145.

    Article  CAS  Google Scholar 

  15. Skaper SD, Facci L, Giusti P . Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets 2014; 13: 1654–1666.

    Article  Google Scholar 

  16. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R . Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA 2008; 105: 18053–18057.

    Article  CAS  Google Scholar 

  17. Carter MC, Metcalfe DD, Komarow HD . Mastocytosis. Immunol Allergy Clin North Am 2014; 34: 181–196.

    Article  Google Scholar 

  18. Akin C, Valent P . Diagnostic criteria and classification of mastocytosis in 2014. Immunol Allergy Clin North Am 2014; 34: 207–218.

    Article  Google Scholar 

  19. Moura DS, Georgin-Lavialle S, Gaillard R, Hermine O . Neuropsychological features of adult mastocytosis. Immunol Allergy Clin North Am 2014; 34: 407–422.

    Article  Google Scholar 

  20. Moura DS, Sultan S, Georgin-Lavialle S, Pillet N, Montestruc F, Gineste P et al. Depression in patients with mastocytosis: prevalence, features and effects of masitinib therapy. PloS One 2011; 6: e26375.

    Article  CAS  Google Scholar 

  21. Moura DS, Sultan S, Georgin-Lavialle S, Barete S, Lortholary O, Gaillard R et al. Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression. PloS One 2012; 7: e39468.

    Article  CAS  Google Scholar 

  22. Rogers MP, Bloomingdale K, Murawski BJ, Soter NA, Reich P, Austen KF . Mixed organic brain syndrome as a manifestation of systemic mastocytosis. Psychosom Med 1986; 48: 437–447.

    Article  CAS  Google Scholar 

  23. Hermine O, Lortholary O, Leventhal PS, Catteau A, Soppelsa F, Baude C et al. Case-control cohort study of patients’ perceptions of disability in mastocytosis. PloS One 2008; 3: e2266.

    Article  Google Scholar 

  24. Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpé S, Maes M . IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 2005; 10: 538–544.

    Article  CAS  Google Scholar 

  25. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 2010; 15: 393–403.

    Article  CAS  Google Scholar 

  26. Myint A-M, Schwarz MJ, Müller N . The role of the kynurenine metabolism in major depression. J Neural Transm 2012; 119: 245–251.

    Article  CAS  Google Scholar 

  27. Georgin-Lavialle S, Lhermitte L, Baude C, Barete S, Bruneau J, Launay J-M et al. Blood CD34-c-Kit+ cell rate correlates with aggressive forms of systemic mastocytosis and behaves like a mast cell precursor. Blood 2011; 118: 5246–5249.

    Article  CAS  Google Scholar 

  28. Beck A, Steer R, Brown G . Beck Depression Inventory. The Psychological Corporation: San Antonio, TX, 1996.

    Google Scholar 

  29. Aben I, Verhey F, Lousberg R, Lodder J, Honig A . Validity of the Beck Depression Inventory, Hospital Anxiety and Depression Scale, SCL-90, and Hamilton Depression Rating Scale as screening instruments for depression in stroke patients. Psychosomatics 2002; 43: 386–393.

    Article  Google Scholar 

  30. Cohen S, Kamarck T, Mermelstein R . A global measure of perceived stress. J Health Soc Behav 1983; 24: 385–396.

    Article  CAS  Google Scholar 

  31. Kema IP, Schellings AM, Hoppenbrouwers CJ, Rutgers HM, de Vries EG, Muskiet FA . High performance liquid chromatographic profiling of tryptophan and related indoles in body fluids and tissues of carcinoid patients. Clin Chim Acta Int J Clin Chem 1993; 221: 143–158.

    Article  CAS  Google Scholar 

  32. Fujigaki S, Saito K, Takemura M, Fujii H, Wada H, Noma A et al. Species differences in L-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes. Arch Biochem Biophys 1998; 358: 329–335.

    Article  CAS  Google Scholar 

  33. Swartz KJ, During MJ, Freese A, Beal MF . Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci Off J Soc Neurosci 1990; 10: 2965–2973.

    Article  CAS  Google Scholar 

  34. Heyes MP, Markey SP . Quantification of quinolinic acid in rat brain, whole blood, and plasma by gas chromatography and negative chemical ionization mass spectrometry: effects of systemic L-tryptophan administration on brain and blood quinolinic acid concentrations. Anal Biochem 1988; 174: 349–359.

    Article  CAS  Google Scholar 

  35. Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X et al. The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders. Transl Psychiatry 2014; 4: e479.

    Article  CAS  Google Scholar 

  36. Stiegel MA, Pleil JD, Sobus JR, Morgan MK, Madden MC . Analysis of inflammatory cytokines in human blood, breath condensate, and urine using a multiplex immunoassay platform. Biomark Biochem Indic Expo Response Susceptibility Chem 2015; 20: 35–46.

    CAS  Google Scholar 

  37. Savitz J, Drevets WC, Smith CM, Victor TA, Wurfel BE, Bellgowan PS et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2015; 40: 463–471.

    Article  CAS  Google Scholar 

  38. Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q . Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13: 465–477.

    Article  CAS  Google Scholar 

  39. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein H-G, Sarnyai Z et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 2011; 8: 94.

    Article  CAS  Google Scholar 

  40. Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M et al. Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2013; 38: 743–752.

    Article  CAS  Google Scholar 

  41. Fox JM, Crabtree JM, Sage LK, Tompkins SM, Tripp RA . Interferon Lambda upregulates IDO1 expression in respiratory epithelial cells after influenza virus infection. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 2015; 35: 554–562.

    Article  CAS  Google Scholar 

  42. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 2001; 344: 961–966.

    Article  CAS  Google Scholar 

  43. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M . Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 2002; 72: 237–241.

    Article  CAS  Google Scholar 

  44. Raison CL, Demetrashvili M, Capuron L, Miller AH . Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 2005; 19: 105–123.

    Article  CAS  Google Scholar 

  45. Capuron L, Fornwalt FB, Knight BT, Harvey PD, Ninan PT, Miller AH . Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord 2009; 119: 181–185.

    Article  CAS  Google Scholar 

  46. Raison CL, Borisov AS, Broadwell SD, Capuron L, Woolwine BJ, Jacobson IM et al. Depression during pegylated interferon-alpha plus ribavirin therapy: prevalence and prediction. J Clin Psychiatry 2005; 66: 41–48.

    Article  CAS  Google Scholar 

  47. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70: 31–41.

    Article  CAS  Google Scholar 

  48. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001; 58: 445–452.

    Article  CAS  Google Scholar 

  49. Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H . Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 2005; 19: 453–460.

    Article  CAS  Google Scholar 

  50. DellaGioia N, Hannestad J . A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev 2010; 34: 130–143.

    Article  CAS  Google Scholar 

  51. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Dolan RJ et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 2009; 66: 415–422.

    Article  Google Scholar 

  52. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R . The new « 5-HT » hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 702–721.

    Article  CAS  Google Scholar 

  53. Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman A-J . Brain mast cell relationship to neurovasculature during development. Brain Res 2007; 1171: 18–29.

    Article  CAS  Google Scholar 

  54. Paus R, Theoharides TC, Arck PC . Neuroimmunoendocrine circuitry of the « brain-skin connection ». Trends Immunol 2006; 27: 32–39.

    Article  CAS  Google Scholar 

  55. Campbell DJ, Kernan JA . Mast cells in the central nervous system. Nature 1966; 210: 756–757.

    Article  CAS  Google Scholar 

  56. Cirulli F, Pistillo L, de Acetis L, Alleva E, Aloe L . Increased number of mast cells in the central nervous system of adult male mice following chronic subordination stress. Brain Behav Immun 1998; 12: 123–133.

    Article  CAS  Google Scholar 

  57. Edvinsson L, Cervós-Navarro J, Larsson LI, Owman C, Rönnberg AL . Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain. Neurology 1977; 27: 878–883.

    Article  CAS  Google Scholar 

  58. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S et al. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res 2001; 888: 117–127.

    Article  CAS  Google Scholar 

  59. Theoharides TC . Mast cells and stress—a psychoneuroimmunological perspective. J Clin Psychopharmacol 2002; 22: 103–108.

    Article  CAS  Google Scholar 

  60. Theoharides TC, Cochrane DE . Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 2004; 146: 1–12.

    Article  CAS  Google Scholar 

  61. Kawasaki H, Chang H-W, Tseng H-C, Hsu S-C, Yang S-J, Hung C-H et al. A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor. Allergy 2014; 69: 445–452.

    Article  CAS  Google Scholar 

  62. Zhou Y, Tung H-Y, Tsai Y-M, Hsu S-C, Chang H-W, Kawasaki H et al. Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood 2013; 121: 3195–3204.

    Article  CAS  Google Scholar 

  63. Sibilano R, Frossi B, Calvaruso M, Danelli L, Betto E, Dall’Agnese A et al. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J Immunol 2012; 189: 120–127.

    Article  CAS  Google Scholar 

  64. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 2006; 367: 29–35.

    Article  CAS  Google Scholar 

  65. Krishnan R, Cella D, Leonardi C, Papp K, Gottlieb AB, Dunn M et al. Effects of etanercept therapy on fatigue and symptoms of depression in subjects treated for moderate to severe plaque psoriasis for up to 96 weeks. Br J Dermatol 2007; 157: 1275–1277.

    Article  CAS  Google Scholar 

  66. Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA et al. Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol Off J Am Soc Clin Oncol 2006; 24: 1852–1859.

    Article  CAS  Google Scholar 

  67. Maes M, Song C, Yirmiya R . Targeting IL-1 in depression. Expert Opin Ther Targets 2012; 16: 1097–1112.

    Article  CAS  Google Scholar 

  68. Maes M, Anderson G, Kubera M, Berk M . Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 2014; 18: 495–512.

    Article  CAS  Google Scholar 

  69. Kushnir-Sukhov NM, Brittain E, Scott L, Metcalfe DD . Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest 2008; 38: 953–958.

    Article  CAS  Google Scholar 

  70. Hannestad J, DellaGioia N, Ortiz N, Pittman B, Bhagwagar Z . Citalopram reduces endotoxin-induced fatigue. Brain Behav Immun 2011; 25: 256–259.

    Article  CAS  Google Scholar 

  71. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci Off J Soc Neurosc 2009; 29: 4200–4209.

    Article  Google Scholar 

  72. Katz JB, Muller AJ, Prendergast GC . Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 2008; 222: 206–221.

    Article  CAS  Google Scholar 

  73. Kox M, Pompe JC, Gordinou de Gouberville MC, van der Hoeven JG, Hoedemaekers CW, Pickkers P . Effects of the α7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock 2011; 36: 5–11.

    Article  CAS  Google Scholar 

  74. Tracey KJ . Reflex control of immunity. Nat Rev Immunol 2009; 9: 418–428.

    Article  CAS  Google Scholar 

  75. Schwarcz R, Whetsell WO Jr, Mangano RM . Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 1983; 219: 316–318.

    Article  CAS  Google Scholar 

  76. Aan Het Rot M, Zarate CA, Charney DS, Mathew SJ . Ketamine for depression: where do we go from here? Biol Psychiatry 2012; 72: 537–547.

    Article  CAS  Google Scholar 

  77. De Maricourt P, Jay T, Goncalvès P, Lôo H, Gaillard R . [Ketamine’s antidepressant effect: literature review on clinical use]. L’Encéphale 2014; 40: 15–23.

    Article  CAS  Google Scholar 

  78. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 2013; 38: 1609–1616.

    Article  CAS  Google Scholar 

  79. Kocic I, Kowianski P, Rusiecka I, Lietzau G, Mansfield C, Moussy A et al. Neuroprotective effect of masitinib in rats with postischemic stroke. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 79–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sophie Georgin-Lavialle is a recipient of a grant from SNFMI-Genzyme-maladies rares and Centre National de la Recherche Scientifique (CNRS) and Assistance Publique Hôpitaux de Paris (AP-HP). Daniela S Moura is a recipient of a grant from the Cancéropôle Ile-de-France (Appel d’Offre SHS 2009). Jean-Christophe Chauvet-Gélinier is supported by a Program Hospitalier de Recherche Clinique Interrégional grant (PHRC-IR 2009), GIRCI Est, France.

Author contributions

DSM, RG, J-ML, OH, SG-L, AS: study concept and design. SG-L, DSM, J-ML, J-CC-G, OH, AS: acquisition of data, analysis and interpretation of data. SG-L, RG and AS: drafting of the manuscript. DSM, J-ML, J-CC-G, FC, GD, ES, RG, SB, CG-G, CB, M-AA, AA, OL, BT, EH, PV, J-RT, PD, BB, OH and SG-L: acquisition of data and edition of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to O Hermine or R Gaillard.

Ethics declarations

Competing interests

RG has received compensation as a member of the scientific advisory board of Janssen, Lundbeck, Roche, Takeda. He has served as consultant and/or speaker for Astra Zeneca, Pierre Fabre, Lilly, Otsuka, SANOFI, Servier and received compensation, and he has received research support from Servier. AS has consulted for Servier and received compensation. SGL has served as consultant and/or speaker for SOBI and Novartis and received financial help from SOBI and Bayer for travelling to congress. OH received research funding and honorarium from AB Science. The remaining authors declare no conflict of interest.

Additional information

French Mast Cell Study Group Odile Beyne-Rauzy, Christian de Gennes, Isabelle Durieu, Olivier Fain, Bernard Grosbois, Isabelle Guichard, Mohamed Hamidou, David Launay, Christian Lavigne, Christina Livideanu, Franck Nicolini, Frederique Retornaz, Michel Arock and Jean-Benoit Arlet.

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgin-Lavialle, S., Moura, D., Salvador, A. et al. Mast cells' involvement in inflammation pathways linked to depression: evidence in mastocytosis. Mol Psychiatry 21, 1511–1516 (2016). https://doi.org/10.1038/mp.2015.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.216

This article is cited by

Search

Quick links