Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities

Subjects

Abstract

Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4+ NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Newberg AR, Catapano LA, Zarate CA, Manji HK . Neurobiology of bipolar disorder. Expert Rev Neurother 2008; 8: 93–110.

    Article  CAS  PubMed  Google Scholar 

  2. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ et al. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 2010; 177: 575–585.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA Jr et al. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 2012; 126: 332–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mendlewicz J, Rainer JD . Adoption study supporting genetic transmission in manic depressive illness. Nature 1977; 268: 327–329.

    Article  CAS  PubMed  Google Scholar 

  5. Craddock N, Sklar P . Genetics of bipolar disorder. Lancet 2013; 381: 1654–1662.

    Article  CAS  PubMed  Google Scholar 

  6. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  7. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  8. Phillips ML, Swartz HA . A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry 2014; 171: 829–843.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  11. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valvezan AJ, Klein PS . GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci 2012; 5: 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O'Brien WT, Klein PS . Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans 2009; 37: 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beaulieu JM, Gainetdinov RR, Caron MG . Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009; 49: 327–347.

    Article  CAS  PubMed  Google Scholar 

  15. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castrén E, Hen R . Neuronal plasticity and antidepressant actions. Trends Neurosci 2013; 36: 259–267.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  18. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141–146.

    Article  CAS  PubMed  Google Scholar 

  19. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  20. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460: 53–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  22. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N . Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010; 6: 407–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 2011; 6: e26203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebert AD, Yu J, Rose FF Jr., Mattis VB, Lorson CL, Thomson JA et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457: 277–280.

    Article  CAS  PubMed  Google Scholar 

  25. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park IH, Daley GQ . Human iPS cell derivation/reprogramming. Curr Protoc Stem Cell Biol 2009 8:A:4A.1:4A.1.1-4A.1.8.

  27. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brennand KJ, Simone A, Tran N, Gage FH . Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 2012; 17: 1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18: 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  30. Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25: 88–103.

    Article  CAS  PubMed  Google Scholar 

  31. Mostoslavsky G, Kotton DN, Fabian AJ, Gray JT, Lee JS, Mulligan RC . Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 2005; 11: 932–940.

    Article  CAS  PubMed  Google Scholar 

  32. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ . Generation of human-induced pluripotent stem cells. Nat Protoc 2008; 3: 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  33. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008; 40: 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. ISC. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weir BS, Anderson AD, Hepler AB . Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 2006; 7: 771–780.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan SH, Martin J, Elia J, Flippin J, Paramban RI, Hefferan MP et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 2011; 6: e17540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011; 144: 439–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18: S96–104.

    Article  PubMed  Google Scholar 

  40. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1–25.

    Article  Google Scholar 

  41. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR et al. AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology 2011; 36: 1397–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gershon ES, Targum SD, Matthysse S, Bunney WE Jr . Color blindness not closely linked to bipolar illness. Report of a new pedigree series. Arch Gen Psychiatry 1979; 36: 1423–1430.

    Article  CAS  PubMed  Google Scholar 

  44. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP et al. A bioinformatic assay for pluripotency in human cells. Nat Methods 2011; 8: 315–317.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O . A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 2009; 106: 3225–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L . Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 2008; 22: 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Topark-Ngarm A, Golonzhka O, Peterson VJ, Barrett B Jr, Martinez B, Crofoot K et al. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J Biol Chem 2006; 281: 32272–32283.

    Article  CAS  PubMed  Google Scholar 

  49. Simon R, Brylka H, Schwegler H, Venkataramanappa S, Andratschke J, Wiegreffe C et al. A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J 2012; 31: 2922–2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD . Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8: 427–437.

    Article  CAS  PubMed  Google Scholar 

  51. Folsom TD, Fatemi SH . The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013; 68: 122–135.

    Article  CAS  PubMed  Google Scholar 

  52. PGCBDW Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  53. Green EK, Grozeva D, Forty L, Gordon-Smith K, Russell E, Farmer A et al. Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol Psychiatry 2013; 18: 614–617.

    Article  CAS  PubMed  Google Scholar 

  54. Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Mol Psychiatry 2012; 18: 1302–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167: 1254–1263.

    Article  PubMed  Google Scholar 

  56. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O et al. A human phenome–interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 2007; 25: 309–316.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao WN, Cheng C, Theriault KM, Sheridan SD, Tsai LH, Haggarty SJ . A high-throughput screen for Wnt/beta-catenin signaling pathway modulators in human iPSC-derived neural progenitors. J Biomol Screen 2012; 17: 1252–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M . Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008; 26: 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  60. Suter DM, Tirefort D, Julien S, Krause KH . A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 2009; 27: 49–58.

    Article  CAS  PubMed  Google Scholar 

  61. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012; 482: 216–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG, O'Shea KS . Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry 2014; 4: e375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rush AM, Wittmack EK, Tyrrell L, Black JA, Dib-Hajj SD, Waxman SG . Differential modulation of sodium channel Na(v)1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. Eur J Neurosci 2006; 23: 2551–2562.

    Article  PubMed  Google Scholar 

  64. Lou JY, Laezza F, Gerber BR, Xiao M, Yamada KA, Hartmann H et al. Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. J Physiol 2005; 569: 179–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wittmack EK, Rush AM, Craner MJ, Goldfarb M, Waxman SG, Dib-Hajj SD . Fibroblast growth factor homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J Neurosci 2004; 24: 6765–6775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu CJ, Dib-Hajj SD, Renganathan M, Cummins TR, Waxman SG . Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B. J Biol Chem 2003; 278: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  67. Yan H, Pablo JL, Pitt GS . FGF14 regulates presynaptic Ca2+ channels and synaptic transmission. Cell Rep 2013; 4: 66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao M, Bosch MK, Nerbonne JM, Ornitz DM . FGF14 localization and organization of the axon initial segment. Mol Cell Neurosci 2013; 56: 393–403.

    Article  CAS  PubMed  Google Scholar 

  69. Shavkunov AS, Wildburger NC, Nenov MN, James TF, Buzhdygan TP, Panova-Elektronova NI et al. The fibroblast growth factor 14.voltage-gated sodium channel complex is a new target of glycogen synthase kinase 3 (GSK3). J Biol Chem 2013; 288: 19370–19385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zuko A, Kleijer KT, Oguro-Ando A, Kas MJ, van Daalen E, van der Zwaag B et al. Contactins in the neurobiology of autism. Eur J Pharmacol 2013; 719: 63–74.

    Article  CAS  PubMed  Google Scholar 

  71. Kerner B, Lambert CG, Muthen BO . Genome-wide association study in bipolar patients stratified by co-morbidity. PLoS One 2011; 6: e28477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003; 115: 163–175.

    Article  CAS  PubMed  Google Scholar 

  73. Haggarty SJ, Perlis RH . Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 2013; 75: 952–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from the National Institute of Mental Health (R21MH093958, R33MH087896) and the Stanley Medical Research Institute. We thank members of the MGH CHGR iModels Group for helpful feedback and comments along with other members of the Perlis and Haggarty Laboratories, and Drs Casey Gifford and Alexander Meissner for carrying out the NanoString Scorecard Assays. We also thank members of the Genomics Platform for their assistance with genomic analysis. Dr Eliot Gershon is thanked for providing details on the BD family fibroblast sample collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J M Madison or S J Haggarty.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madison, J., Zhou, F., Nigam, A. et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 20, 703–717 (2015). https://doi.org/10.1038/mp.2015.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.7

This article is cited by

Search

Quick links