Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Identifying fast-onset antidepressants using rodent models

Abstract

Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2–4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT)2C receptor antagonists, a 5-HT4 receptor agonist, a 5-HT7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289: 3095–3105.

    PubMed  Google Scholar 

  2. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D et al. Medication augmentation after the failure of SSRIs for depression. N Engl J Med 2006; 354: 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  3. Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K et al. Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 2007; 68: 1062–1070.

    Article  PubMed  Google Scholar 

  4. Papakostas GI . Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J Clin Psychiatry 2009; 70 (Suppl 6): 16–25.

    Article  CAS  PubMed  Google Scholar 

  5. Fava M, Rush AJ, Alpert JE, Balasubramani GK, Wisniewski SR, Carmin CN et al. Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. Am J Psychiatry 2008; 165: 342–351.

    Article  PubMed  Google Scholar 

  6. Hendrie C, Pickles A, Stanford SC, Robinson E . The failure of the antidepressant drug discovery process is systemic. J Psychopharmacol 2013; 27: 407–413, discussion 413–416.

    Article  PubMed  Google Scholar 

  7. Nutt D, Goodwin G . ECNP Summit on the future of CNS drug research in Europe 2011: report prepared for ECNP by David Nutt and Guy Goodwin. Eur Neuropsychopharmacol 2011; 21: 495–499.

    Article  CAS  PubMed  Google Scholar 

  8. Healy D . The Antidepressant Era. Harvard University Press, 1997; 334.

    Google Scholar 

  9. Montgomery SA, Asberg M . A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci 1979; 134: 382–389.

    Article  CAS  Google Scholar 

  10. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zimmerman M, Posternak MA, Chelminski I . Is it time to replace the hamilton depression rating scale as the primary outcome measure in treatment studies of depression? J Clin Psychopharmacol 2005; 25: 105–110.

    Article  PubMed  Google Scholar 

  12. Bech P, Allerup P, Gram LF, Reisby N, Rosenberg R, Jacobsen O et al. The hamilton depression scale. Acta Psychiatr Scand 1981; 63: 290–299.

    Article  CAS  PubMed  Google Scholar 

  13. Shiroma PR, Thuras P, Johns B, Lim KO . Emotion recognition processing as early predictor of response to 8-week citalopram treatment in late-life depression. Int J Geriatr Psychiatry 2014; 29: 1132–1139.

    Article  PubMed  Google Scholar 

  14. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM . Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 2004; 161: 1256–1263.

    Article  PubMed  Google Scholar 

  15. Katz MM, Tekell JL, Bowden CL, Brannan S, Houston JP, Berman N et al. Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 2004; 29: 566–579.

    Article  CAS  PubMed  Google Scholar 

  16. Segman RH, Shapira B, Gorfine M, Lerer B . Onset and time course of antidepressant action: psychopharmacological implications of a controlled trial of electroconvulsive therapy. Psychopharmacology 1995; 119: 440–448.

    Article  CAS  PubMed  Google Scholar 

  17. Wu JC, Bunney WE . The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 1990; 147: 14–21.

    Article  CAS  PubMed  Google Scholar 

  18. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  PubMed  Google Scholar 

  19. Preskorn S, Macaluso M, Mehra DOV, Zammit G, Moskal JR, Burch RM et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract 2015; 21: 140–149.

    Article  PubMed  Google Scholar 

  20. Furey ML, Drevets WC . Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006; 63: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016; 533: 481–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Animal models of psychiatric disorders Geyer MA . Animal models of psychiatric disorders Markou A . Animal models of psychiatric disorders. In: Watson S (ed.). Psychopharmacology: The Fourth Generation of Progress CD-ROM Version 3, Lippincott Williams & Wilkins, 2000. Available at https://www.acnp.org/g4/GN401000076/CH.html (Accessed on 13 April 2016).

  23. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  24. Dulawa SC, Holick KA, Gundersen B, Hen R . Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29: 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  25. Hyman SE . Back to basics: luring industry back into neuroscience. Nat Neurosci 2016; 19: 1383–1384.

    Article  CAS  PubMed  Google Scholar 

  26. Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T . Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 2009; 34: 74–89.

    Article  CAS  PubMed  Google Scholar 

  27. Gorodetzky CW, Grudzinskas C . Involving the pharmaceutical and biotech communities in medication development for substance abuse. Pharmacol Ther 2005; 108: 109–118.

    Article  CAS  PubMed  Google Scholar 

  28. De Pablo JM, Ortiz-Caro J, Sanchez-Santed F, Guillamón A . Effects of diazepam, pentobarbital, scopolamine and the timing of saline injection on learned immobility in rats. Physiol Behav 1991; 50: 895–899.

    Article  CAS  PubMed  Google Scholar 

  29. Browne RG . Effects of antidepressants and anticholinergics in a mouse “behavioral despair” test. Eur J Pharmacol 1979; 58: 331–334.

    Article  CAS  PubMed  Google Scholar 

  30. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Y, Wang C, Xue Z, Li C, Zhang J, Zhao X et al. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol 2015; 18.

  33. Yang B, Zhang J-C, Han M, Yao W, Yang C, Ren Q et al. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology 2016; 233: 3647–3657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burgdorf J, Zhang X, Nicholson KL, Balster RL, Leander JD, Stanton PK et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 2013; 38: 729–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voleti B, Navarria A, Liu R-J, Banasr M, Li N, Terwilliger R et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 2013; 74: 742–749.

    Article  CAS  PubMed  Google Scholar 

  36. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS . BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2015; 18: 1.

    Article  CAS  Google Scholar 

  37. Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  PubMed  Google Scholar 

  38. Caldarone BJ, Zachariou V, King SL . Rodent models of treatment-resistant depression. Eur J Pharmacol 2015; 753: 51–65.

    Article  CAS  PubMed  Google Scholar 

  39. Kelly JP, Wrynn AS, Leonard BE . The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 1997; 74: 299–316.

    Article  CAS  PubMed  Google Scholar 

  40. Song C, Leonard BE . The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 2005; 29: 627–647.

    Article  PubMed  Google Scholar 

  41. Redmond AM, Kelly JP, Leonard BE . Behavioural and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression. Pharmacol Biochem Behav 1997; 58: 355–359.

    Article  CAS  PubMed  Google Scholar 

  42. Drevets WC, Price JL, Furey ML . Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213: 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cryan JF, Mombereau C . In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357.

    Article  CAS  PubMed  Google Scholar 

  44. O’Connor WT, Earley B, Leonard BE . Antidepressant properties of the triazolobenzodiazepines alprazolam and adinazolam: studies on the olfactory bulbectomized rat model of depression. Br J Clin Pharmacol 1985; 19 (Suppl 1): 49S–56S.

    Article  PubMed  Google Scholar 

  45. Smith WT, Glaudin V . Double-blind efficacy and safety study comparing adinazolam mesylate and placebo in depressed inpatients. Acta Psychiatr Scand 1986; 74: 238–245.

    Article  CAS  PubMed  Google Scholar 

  46. Kennedy SH, de Groot J, Ralevski E, Reed K . A comparison of adinazolam and desipramine in the treatment of major depression. Int Clin Psychopharmacol 1991; 6: 65–76.

    Article  CAS  PubMed  Google Scholar 

  47. Amsterdam JD, Kaplan M, Potter L, Bloom L, Rickels K . Adinazolam, a new triazolobenzodiazepine, and imipramine in the treatment of major depressive disorder. Psychopharmacology 1986; 88: 484–488.

    Article  CAS  PubMed  Google Scholar 

  48. Hicks F, Robins E, Murphy GE . Comparison of adinazolam, amitriptyline, and placebo in the treatment of melancholic depression. Psychiatry Res 1988; 23: 221–227.

    Article  CAS  PubMed  Google Scholar 

  49. Berlim MT, Turecki G . Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry 2007; 52: 46–54.

    Article  PubMed  Google Scholar 

  50. Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K . Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology 2016; 233: 2077–2097.

    Article  CAS  PubMed  Google Scholar 

  51. Maturana MJ, Pudell C, Targa ADS, Rodrigues LS, Noseda ACD, Fortes MH et al. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy. Mol Neurobiol 2015; 51: 349–360.

    Article  CAS  PubMed  Google Scholar 

  52. Cryan JF, McGrath C, Leonard BE, Norman TR . Combining pindolol and paroxetine in an animal model of chronic antidepressant action—can early onset of action be detected? Eur J Pharmacol 1998; 352: 23–28.

    Article  CAS  PubMed  Google Scholar 

  53. Maier SF . Learned helplessness and animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 1984; 8: 435–446.

    Article  CAS  PubMed  Google Scholar 

  54. Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D et al. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry 2014; 19: 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  55. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007; 55: 712–725.

    Article  CAS  PubMed  Google Scholar 

  56. van Riezen H, Schnieden H, Wren AF . Olfactory bulb ablation in the rat: behavioural changes and their reversal by antidepressant drugs. Br J Pharmacol 1977; 60: 521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Porsolt RD, Anton G, Blavet N, Jalfre M . Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379–391.

    Article  CAS  PubMed  Google Scholar 

  58. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327–336.

    CAS  PubMed  Google Scholar 

  59. Lucki I, Dalvi A, Mayorga AJ . Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 2001; 155: 315–322.

    Article  CAS  PubMed  Google Scholar 

  60. Jiao J, Nitzke AM, Doukas DG, Seiglie MP, Dulawa SC . Antidepressant response to chronic citalopram treatment in eight inbred mouse strains. Psychopharmacology 2011; 213: 509–520.

    Article  CAS  PubMed  Google Scholar 

  61. Holick KA, Lee DC, Hen R, Dulawa SC . Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33: 406–417.

    Article  CAS  PubMed  Google Scholar 

  62. Licznerski P, Duman RS . Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2013; 251: 33–50.

    Article  CAS  PubMed  Google Scholar 

  63. Can A, Blackwell RA, Piantadosi SC, Dao DT, O’Donnell KC, Gould TD . Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes Brain Behav 2011; 10: 434–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guilloux J-P, Mendez-David I, Pehrson A, Guiard BP, Repérant C, Orvoën S et al. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology 2013; 73: 147–159.

    Article  CAS  PubMed  Google Scholar 

  65. Shanahan NA, Velez LP, Masten VL, Dulawa SC . Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry 2011; 70: 1039–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagatani T, Yamamoto T, Sugihara T, Ueki S . The effect of agonists at the GABA-benzodiazepine receptor complex on the duration of immobility of mice in the forced swimming test. Eur J Pharmacol 1987; 142: 17–22.

    Article  CAS  PubMed  Google Scholar 

  67. Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011; 69: 754–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L et al. Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 2008; 103: 502–506.

    Article  CAS  PubMed  Google Scholar 

  69. Chen J, Peng L-H, Luo J, Liu L, Lv F, Li P et al. Effects of low-dose ketamine combined with propofol on phosphorylation of AMPA receptor GluR1 subunit and GABAA receptor in hippocampus of stressed rats receiving electroconvulsive shock. J ECT 2015; 31: 50–56.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang Y, Zhu J . Effects of sleep deprivation on behaviors and abnormal hippocampal BDNF/miR-10B expression in rats with chronic stress depression. Int J Clin Exp Pathol 2015; 8: 586–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yalcin I, Aksu F, Belzung C . Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 2005; 514: 165–174.

    Article  CAS  PubMed  Google Scholar 

  72. Wu L-M, Han H, Wang Q-N, Hou H-L, Tong H, Yan X-B et al. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology 2007; 32: 2500–2510.

    Article  CAS  PubMed  Google Scholar 

  73. Sun J-D, Liu Y, Yuan Y-H, Li J, Chen N-H . Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 2012; 37: 1305–1320.

    Article  CAS  PubMed  Google Scholar 

  74. D’Aquila PS, Newton J, Willner P . Diurnal variation in the effect of chronic mild stress on sucrose intake and preference. Physiol Behav 1997; 62: 421–426.

    Article  PubMed  Google Scholar 

  75. Forbes NF, Stewart CA, Matthews K, Reid IC . Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav 1996; 60: 1481–1484.

    Article  CAS  PubMed  Google Scholar 

  76. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 2005; 29: 771–783.

    Article  CAS  PubMed  Google Scholar 

  77. Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ . A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology 1989; 97: 277–279.

    Article  CAS  PubMed  Google Scholar 

  78. Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ . The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 1988; 95: 298–302.

    Article  CAS  PubMed  Google Scholar 

  79. Carrier N, Kabbaj M . Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 2013; 70: 27–34.

    Article  CAS  PubMed  Google Scholar 

  80. Koike H, Iijima M, Chaki S . Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 2011; 61: 1419–1423.

    Article  CAS  PubMed  Google Scholar 

  81. Gideons ES, Kavalali ET, Monteggia LM . Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 2014; 111: 8649–8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iijima M, Fukumoto K, Chaki S . Acute and sustained effects of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. Behav Brain Res 2012; 235: 287–292.

    Article  CAS  PubMed  Google Scholar 

  83. Mazella J, Pétrault O, Lucas G, Deval E, Béraud-Dufour S, Gandin C et al. Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 2010; 8: e1000355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pascual-Brazo J, Castro E, Díaz A, Valdizán EM, Pilar-Cuéllar F, Vidal R et al. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT4 receptor agonist RS67333. Int J Neuropsychopharmacol 2012; 15: 631–643.

    Article  CAS  PubMed  Google Scholar 

  85. Zanos P, Piantadosi SC, Wu H-Q, Pribut HJ, Dell MJ, Can A et al. The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/glycineb-site inhibition. J Pharmacol Exp Ther 2015; 355: 76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fukumoto K, Chaki S . Involvement of serotonergic system in the effect of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. J Pharmacol Sci 2015; 127: 57–61.

    Article  CAS  PubMed  Google Scholar 

  87. Fukumoto K, Iijima M, Chaki S . Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacology 2014; 231: 2291–2298.

    Article  CAS  PubMed  Google Scholar 

  88. Koike H, Fukumoto K, Iijima M, Chaki S . Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res 2013; 238: 48–52.

    Article  CAS  PubMed  Google Scholar 

  89. Stan TL, Sousa VC, Zhang X, Ono M, Svenningsson P . Lurasidone and fluoxetine reduce novelty-induced hypophagia and NMDA receptor subunit and PSD-95 expression in mouse brain. Eur Neuropsychopharmacol 2015; 25: 1714–1722.

    Article  CAS  PubMed  Google Scholar 

  90. Karlsson R-M, Choe JS, Cameron HA, Thorsell A, Crawley JN, Holmes A et al. The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice. Psychopharmacology 2008; 195: 547–557.

    Article  CAS  PubMed  Google Scholar 

  91. Andreasen JT, Fitzpatrick CM, Larsen M, Skovgaard L, Nielsen SD, Clausen RP et al. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action. Brain Res 2015; 1601: 117–126.

    Article  CAS  PubMed  Google Scholar 

  92. Louderback KM, Wills TA, Muglia LJ, Winder DG . Knockdown of BNST GluN2B-containing NMDA receptors mimics the actions of ketamine on novelty-induced hypophagia. Transl Psychiatry 2013; 3: e331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

    Article  CAS  PubMed  Google Scholar 

  94. Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C et al. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry 2015; 79: 776–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Donahue RJ, Muschamp JW, Russo SJ, Nestler EJ, Carlezon WA . Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry 2014; 76: 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang Q, Guo F, Fu Z-W, Zhang B, Huang C-G, Li Y . Timosaponin derivative YY-23 acts as a non-competitive NMDA receptor antagonist and exerts a rapid antidepressant-like effect in mice. Acta Pharmacol Sin 2016; 37: 166–176.

    Article  CAS  PubMed  Google Scholar 

  97. Geoffroy M, Scheel-Krüger J, Christensen AV . Effect of imipramine in the “learned helplessness” model of depression in rats is not mimicked by combinations of specific reuptake inhibitors and scopolamine. Psychopharmacology 1990; 101: 371–375.

    Article  CAS  PubMed  Google Scholar 

  98. Beurel E, Song L, Jope RS . Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 2011; 16: 1068–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Biedermann S, Weber-Fahr W, Zheng L, Hoyer C, Vollmayr B, Gass P et al. Increase of hippocampal glutamate after electroconvulsive treatment: a quantitative proton MR spectroscopy study at 9.4 T in an animal model of depression. World J Biol Psychiatry 2012; 13: 447–457.

    Article  PubMed  Google Scholar 

  100. Sartorius A, Vollmayr B, Neumann-Haefelin C, Ende G, Hoehn M, Henn FA . Specific creatine rise in learned helplessness induced by electroconvulsive shock treatment. Neuroreport 2003; 14: 2199–2201.

    Article  CAS  PubMed  Google Scholar 

  101. Sherman AD, Sacquitne JL, Petty F . Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 1982; 16: 449–454.

    Article  CAS  PubMed  Google Scholar 

  102. Cryan JF, Mombereau C, Vassout A . The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29: 571–625.

    Article  CAS  PubMed  Google Scholar 

  103. Lucki I . The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997; 8: 523–532.

    Article  CAS  PubMed  Google Scholar 

  104. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thoenen H . Neurotrophins and neuronal plasticity. Science 1995; 270: 593–598.

    Article  CAS  PubMed  Google Scholar 

  106. Lee B, Sur B, Shim J, Hahm D-H, Lee H . Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. BMC Complement Altern Med 2014; 14: 338.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R et al. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PloS ONE 2011; 6: e27265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen W, Cheng X, Chen J, Yi X, Nie D, Sun X et al. Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PloS ONE 2014; 9: e88076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kotani S, Yamauchi T, Teramoto T, Ogura H . Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis. Chem Biol Interact 2008; 175: 227–230.

    Article  CAS  PubMed  Google Scholar 

  110. Shi Z, Chen L, Li S, Chen S, Sun X, Sun L et al. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology 2013; 230: 245–260.

    Article  CAS  PubMed  Google Scholar 

  111. Heo Y-M, Shin M-S, Kim S-H, Kim T-W, Baek S-B, Baek S-S . Treadmill exercise ameliorates disturbance of spatial learning ability in scopolamine-induced amnesia rats. J Exerc Rehabil 2014; 10: 155–161.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vaidya VA, Siuciak JA, Du F, Duman RS . Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience 1999; 89: 157–166.

    Article  CAS  PubMed  Google Scholar 

  114. Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F . Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 2015; 69: 15–25.

    Article  CAS  PubMed  Google Scholar 

  115. Tang J, Xue W, Xia B, Ren L, Tao W, Chen C et al. Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep 2015; 5: 13573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fumagalli F, Pasini M, Sartorius A, Scherer R, Racagni G, Riva MA et al. Repeated electroconvulsive shock (ECS) alters the phosphorylation of glutamate receptor subunits in the rat hippocampus. Int J Neuropsychopharmacol 2010; 13: 1255–1260.

    Article  CAS  PubMed  Google Scholar 

  117. Gao X, Zhuang F-Z, Qin S-J, Zhou L, Wang Y, Shen Q-F et al. Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway. Psychiatry Res 2016; 243: 446–452.

    Article  CAS  PubMed  Google Scholar 

  118. Xie M, Li C, He C, Yang L, Tan G, Yan J et al. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory. Behav Brain Res 2016; 300: 70–76.

    Article  CAS  PubMed  Google Scholar 

  119. Xie M, Yan J, He C, Yang L, Tan G, Li C et al. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus. Behav Brain Res 2015; 286: 64–70.

    Article  CAS  PubMed  Google Scholar 

  120. Zhou W, Dong L, Wang N, Shi J, Yang J, Zuo Z et al. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation 2014; 21: 183–188.

    Article  CAS  PubMed  Google Scholar 

  121. West CHK, Weiss JM . Effects of chronic antidepressant drug administration and electroconvulsive shock on activity of dopaminergic neurons in the ventral tegmentum. Int J Neuropsychopharmacol 2011; 14: 201–210.

    Article  CAS  PubMed  Google Scholar 

  122. Tsen P, El Mansari M, Blier P . Effects of repeated electroconvulsive shocks on catecholamine systems: electrophysiological studies in the rat brain. Synape 2013; 67: 716–727.

    Article  CAS  Google Scholar 

  123. Belujon P, Grace AA . Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 2014; 76: 927–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hand TH, Hu XT, Wang RY . Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res 1987; 415: 257–269.

    Article  CAS  PubMed  Google Scholar 

  125. Schilström B, Ivanov VB, Wiker C, Svensson TH . Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 2007; 32: 43–53.

    Article  CAS  PubMed  Google Scholar 

  126. Yoshida K, Higuchi H, Kamata M, Yoshimoto M, Shimizu T, Hishikawa Y . Dopamine releasing response in rat striatum to single and repeated electroconvulsive shock treatment. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21: 707–715.

    Article  CAS  PubMed  Google Scholar 

  127. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA . Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003; 117: 697–706.

    Article  CAS  PubMed  Google Scholar 

  128. Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY . Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002; 958: 176–184.

    Article  CAS  PubMed  Google Scholar 

  129. Zant JC, Leenaars CHC, Kostin A, Van Someren EJW, Porkka-Heiskanen T . Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 2011; 1399: 40–48.

    Article  CAS  PubMed  Google Scholar 

  130. Luo J, Min S, Wei K, Cao J, Wang B, Li P et al. Behavioral and molecular responses to electroconvulsive shock differ between genetic and environmental rat models of depression. Psychiatry Res 2015; 226: 451–460.

    Article  CAS  PubMed  Google Scholar 

  131. Tanis KQ, Duman RS, Newton SS . CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008; 63: 710–720.

    Article  CAS  PubMed  Google Scholar 

  132. Jeon SH, Seong YS, Juhnn YS, Kang UG, Ha KS, Kim YS et al. Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser-133 in rat hippocampus but not in cerebellum. Neuropharmacology 1997; 36: 411–414.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou W, Wang N, Yang C, Li X-M, Zhou Z-Q, Yang J-J . Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 2014; 29: 419–423.

    Article  CAS  PubMed  Google Scholar 

  134. Wu Y-Y, Wang X, Tan L, Liu D, Liu X-H, Wang Q et al. Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3β and preservation of postsynaptic components. J Alzheimers Dis 2013; 37: 515–527.

    Article  CAS  PubMed  Google Scholar 

  135. Guo L, Guo Z, Luo X, Liang R, Yang S, Ren H et al. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory. Neurosci Lett 2016; 635: 44–50.

    Article  CAS  PubMed  Google Scholar 

  136. Su X, Wang C, Wang X, Han F, Lv C, Zhang X . Sweet dream liquid chinese medicine ameliorates learning and memory deficit in a rat model of paradoxical sleep deprivation through the ERK/CREB signaling pathway. J Med Food 2016; 19: 472–480.

    Article  PubMed  Google Scholar 

  137. Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R et al. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 2006; 575: 807–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao W, Wang J, Bi W, Ferruzzi M, Yemul S, Freire D et al. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction. Neurochem Int 2015; 89: 191–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Alkadhi KA, Alhaider IA . Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1. Mol Cell Neurosci 2016; 71: 125–131.

    Article  CAS  PubMed  Google Scholar 

  140. Alhaider IA, Alkadhi KA . Caffeine treatment prevents rapid eye movement sleep deprivation-induced impairment of late-phase long-term potentiation in the dentate gyrus. Eur J Neurosci 2015; 42: 2843–2850.

    Article  PubMed  Google Scholar 

  141. Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H . Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2015; 279: 177–190.

    Article  CAS  PubMed  Google Scholar 

  142. Vollmayr B, Faust H, Lewicka S, Henn FA . Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 2001; 6: 471–474.

    Article  CAS  PubMed  Google Scholar 

  143. Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP et al. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 2007; 12: 167–189.

    Article  CAS  PubMed  Google Scholar 

  144. Jacobsen JPR, Mørk A . The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 2004; 1024: 183–192.

    Article  CAS  PubMed  Google Scholar 

  145. Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E et al. Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 2003; 23: 10841–10851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM . Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 2003; 54: 703–709.

    Article  CAS  PubMed  Google Scholar 

  147. Moshe H, Gal R, Barnea-Ygael N, Gulevsky T, Alyagon U, Zangen A . Prelimbic stimulation ameliorates depressive-like behaviors and increases regional BDNF expression in a novel drug-resistant animal model of depression. Brain Stimul 2016; 9: 243–250.

    Article  PubMed  Google Scholar 

  148. Hidaka N, Suemaru K, Takechi K, Li B, Araki H . Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 2011; 65: 269–277.

    CAS  PubMed  Google Scholar 

  149. Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B et al. Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 2009; 42: 270–276.

    Article  CAS  PubMed  Google Scholar 

  150. Taliaz D, Nagaraj V, Haramati S, Chen A, Zangen A . Altered brain-derived neurotrophic factor expression in the ventral tegmental area, but not in the hippocampus, is essential for antidepressant-like effects of electroconvulsive therapy. Biol Psychiatry 2013; 74: 305–312.

    Article  CAS  PubMed  Google Scholar 

  151. Luo J, Min S, Wei K, Zhang J, Liu Y . Propofol interacts with stimulus intensities of electroconvulsive shock to regulate behavior and hippocampal BDNF in a rat model of depression. Psychiatry Res 2012; 198: 300–306.

    Article  CAS  PubMed  Google Scholar 

  152. O’Donovan S, Kennedy M, Guinan B, O’Mara S, McLoughlin DM . A comparison of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37: 147–152.

    Article  PubMed  Google Scholar 

  153. Gersner R, Toth E, Isserles M, Zangen A . Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol Psychiatry 2010; 67: 125–132.

    Article  CAS  PubMed  Google Scholar 

  154. Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I . Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 2008; 1211: 37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li B, Suemaru K, Cui R, Araki H . Repeated electroconvulsive stimuli have long-lasting effects on hippocampal BDNF and decrease immobility time in the rat forced swim test. Life Sci 2007; 80: 1539–1543.

    Article  CAS  PubMed  Google Scholar 

  156. Angelucci F, Aloe L, Jiménez-Vasquez P, Mathé AA . Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in adult rat brain. J ECT 2002; 18: 138–143.

    Article  PubMed  Google Scholar 

  157. Chen AC, Shin KH, Duman RS, Sanacora G . ECS-Induced mossy fiber sprouting and BDNF expression are attenuated by ketamine pretreatment. J ECT 2001; 17: 27–32.

    Article  CAS  PubMed  Google Scholar 

  158. Zetterström TS, Pei Q, Grahame-Smith DG . Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res Mol Brain Res 1998; 57: 106–110.

    Article  PubMed  Google Scholar 

  159. Lindefors N, Brodin E, Metsis M . Spatiotemporal selective effects on brain-derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience 1995; 65: 661–670.

    Article  CAS  PubMed  Google Scholar 

  160. Kang UG, Koo YJ, Jeon WJ, Park DB, Juhnn YS, Park JB et al. Activation of extracellular signal-regulated kinase signaling by chronic electroconvulsive shock in the rat frontal cortex. Psychiatry Res 2006; 145: 75–78.

    Article  CAS  PubMed  Google Scholar 

  161. Dyrvig M, Christiansen SH, Woldbye DPD, Lichota J . Temporal gene expression profile after acute electroconvulsive stimulation in the rat. Gene 2014; 539: 8–14.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang H, Xue W, Wu R, Gong T, Tao W, Zhou X et al. Rapid antidepressant activity of ethanol extract of gardenia jasminoides ellis is associated with upregulation of BDNF expression in the hippocampus. Evid Based Complement Altern Med 2015; 2015: 761238.

    Google Scholar 

  163. Becker A, Grecksch G, Schwegler H, Roskoden T . Expression of mRNA of neurotrophic factors and their receptors are significantly altered after subchronic ketamine treatment. Med Chem 2008; 4: 256–263.

    Article  CAS  PubMed  Google Scholar 

  164. Fujihara H, Sei H, Morita Y, Ueta Y, Morita K . Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci 2003; 21: 223–232.

    Article  CAS  PubMed  Google Scholar 

  165. Hansen HH, Rantamäki TPJ, Larsen MH, Woldbye DPD, Mikkelsen JD, Castrén EH . Rapid activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway by electroconvulsive shock in the rat prefrontal cortex is not associated with TrkB neurotrophin receptor activation. Cell Mol Neurobiol 2007; 27: 585–594.

    Article  CAS  PubMed  Google Scholar 

  166. Liu R-J, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK . GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 2013; 38: 2268–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K . Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 2012; 62: 2018–2023.

    Article  CAS  PubMed  Google Scholar 

  168. Ravassard P, Pachoud B, Comte J-C, Mejia-Perez C, Scoté-Blachon C, Gay N et al. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 2009; 32: 227–240.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Fujiki M, Abe E, Nagai Y, Shiqi K, Kubo T, Ishii K et al. Electroconvulsive seizure-induced VEGF is correlated with neuroprotective effects against cerebral infarction: involvement of the phosphatidylinositol-3 kinase/Akt pathway. Exp Neurol 2010; 225: 377–383.

    Article  CAS  PubMed  Google Scholar 

  170. Kang UG, Roh M-S, Jung J-R, Shin SY, Lee YH, Park J-B et al. Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 41–44.

    Article  CAS  PubMed  Google Scholar 

  171. Navarria A, Wohleb ES, Voleti B, Ota KT, Dutheil S, Lepack AE et al. Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol Dis 2015; 82: 254–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Basar K, Eren-Kocak E, Ozdemir H, Ertugrul A . Effects of acute and chronic electroconvulsive shocks on glycogen synthase kinase 3β level and phosphorylation in mice. J ECT. 2013; 29: 265–270.

    Article  CAS  PubMed  Google Scholar 

  173. Roh M-S, Kang UG, Shin SY, Lee YH, Jung HY, Juhnn Y-S et al. Biphasic changes in the Ser-9 phosphorylation of glycogen synthase kinase-3beta after electroconvulsive shock in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1–5.

    Article  CAS  PubMed  Google Scholar 

  174. Grønli J, Dagestad G, Milde AM, Murison R, Bramham CR . Post-transcriptional effects and interactions between chronic mild stress and acute sleep deprivation: regulation of translation factor and cytoplasmic polyadenylation element-binding protein phosphorylation. Behav Brain Res 2012; 235: 251–262.

    Article  CAS  PubMed  Google Scholar 

  175. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chowdhury GMI, Zhang J, Thomas M, Banasr M, Ma X, Pittman B et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry 2016; 22: 120–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xie F, Li X, Bao M, Shi R, Yue Y, Guan Y et al. Anesthetic propofol normalized the increased release of glutamate and γ-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res 2015; 37: 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  178. Elfving B, Bonefeld BE, Rosenberg R, Wegener G . Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 2008; 62: 662–670.

    Article  CAS  PubMed  Google Scholar 

  179. Luo J, Min S, Wei K, Cao J, Wang B, Li P et al. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression. Neuropsychiatr Dis Treat 2014; 10: 1847–1859.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a IMHRO Rising Star Depression Research Award in Memory of George Largay, and a NARSAD Independent Investigator Award to SD, a NARSAD Young Investigator Award and T32MH020065 to MR, and a generous gift from The Geraldi Norton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S C Dulawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaker, M., Dulawa, S. Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 22, 656–665 (2017). https://doi.org/10.1038/mp.2017.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.36

This article is cited by

Search

Quick links