Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transmitter-evoked local calcium release stabilizes developing dendrites

Abstract

In the central nervous system, dendritic arborizations of neurons undergo dynamic structural remodelling during development. Processes are elaborated, maintained or eliminated to attain the adult pattern of synaptic connections1,2,3. Although neuronal activity influences this remodelling4,5,6, it is not known how activity exerts its effects. Here we show that neurotransmission-evoked calcium (Ca2+) release from intracellular stores stabilizes dendrites during the period of synapse formation. Using a ballistic labelling method to load cells with Ca2+ indicator dyes7, we simultaneously monitored dendritic activity and structure in the intact retina. Two distinct patterns of spontaneous Ca2+ increases occurred in developing retinal ganglion cells—global increases throughout the arborization, and local ‘flashes’ of activity restricted to small dendritic segments. Blockade of local, but not global, activity caused rapid retraction of dendrites. This retraction was prevented locally by focal uncaging of caged Ca2+ that triggered Ca2+ release from internal stores. Thus, local Ca2+ release is a mechanism by which afferent activity can selectively and differentially regulate dendritic structure across the developing arborization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developing dendrites of retinal ganglion cells exhibit global and local spontaneous [Ca2+]i increase.
Figure 2: Potential contact between a displaced amacrine cell (AC) neurite and a ganglion cell (GC) dendrite.
Figure 3: Dendrites retract when local activity is suppressed.
Figure 4: Ca2+-induced Ca2+ release prevents dendritic retraction.

Similar content being viewed by others

References

  1. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–703 (1996)

    Article  CAS  Google Scholar 

  2. Cline, H. T. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126 (2001)

    Article  CAS  Google Scholar 

  3. Wong, W. T. & Wong, R. O. L. Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol. 10, 118–124 (2000)

    Article  CAS  Google Scholar 

  4. Li, Z., Van Aelst, L. & Cline, H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nature Neurosci. 3, 217–225 (2000)

    Article  CAS  Google Scholar 

  5. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. & Wong, R. O. L. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000)

    Article  CAS  Google Scholar 

  6. Wong, W. T. & Wong, R. O. L. Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nature Neurosci. 4, 351–352 (2001)

    Article  CAS  Google Scholar 

  7. Kettunen, P. et al. Rapid loading of calcium indicators by particle mediated ballistic delivery. J. Neurosci. Methods, in the press

  8. Catsicas, M., Bonness, V., Becker, D. & Mobbs, P. Spontaneous Ca2+ transients and their transmission in the developing chick retina. Curr. Biol. 8, 283–286 (1998)

    Article  CAS  Google Scholar 

  9. Sernagor, E., Eglen, S. J. & O'Donovan, M. J. Differential effects of acetylcholine and glutamate blockade on the spatiotemporal dynamics of retinal waves. J. Neurosci. 20, RC56 (2000)

    Article  CAS  Google Scholar 

  10. Wong, W. T., Sanes, J. R. & Wong, R. O. L. Developmentally regulated spontaneous activity in the embryonic chick retina. J. Neurosci. 18, 8839–8852 (1998)

    Article  CAS  Google Scholar 

  11. Hughes, W. F. & LaVelle, A. On the synaptogenic sequence in the chick retina. Anat. Rec. 179, 297–302 (1974)

    Article  CAS  Google Scholar 

  12. Hering, H. & Kröger, S. Formation of synaptic specializations in the inner plexiform layer of the developing chick retina. J. Comp. Neurol. 375, 393–405 (1996)

    Article  CAS  Google Scholar 

  13. Millar, T. J. et al. Cholinergic amacrine cells of the chicken retina: a light and electron microscope immunocytochemical study. Neuroscience 21, 725–743 (1987)

    Article  CAS  Google Scholar 

  14. Wong, R. O. L., Herrmann, K. & Shatz, C. J. Remodeling of retinal ganglion cell dendrites in the absence of action potential activity. J. Neurobiol. 22, 685–697 (1991)

    Article  CAS  Google Scholar 

  15. Berridge, M. J. Neuronal calcium signalling. Neuron 21, 13–26 (1998)

    Article  CAS  Google Scholar 

  16. Spitzer, N. C., Lautermilch, N. J., Smith, R. D. & Gomez, T. M. Coding of neuronal differentiation by calcium transients. Bioessays 22, 811–817 (2000)

    Article  CAS  Google Scholar 

  17. Chang, K. T. & Berg, D. K. Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron 32, 855–865 (2001)

    Article  CAS  Google Scholar 

  18. Koizumi, S. et al. Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron 22, 125–137 (1999)

    Article  CAS  Google Scholar 

  19. Korkotian, E. & Segal, M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 96, 12068–12072 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Svoboda, K. & Mainen, Z. F. Synaptic [Ca2+]: intracellular stores spill their guts. Neuron 22, 427–430 (1999)

    Article  CAS  Google Scholar 

  21. Rose, C. R. & Konnerth, A. Stores not just for storage. Intracellular calcium release and synaptic plasticity. Neuron 31, 519–522 (2001)

    Article  CAS  Google Scholar 

  22. Yuste, R., Majewska, A. & Holthoff, K. From form to function: calcium compartmentalization in dendritic spines. Nature Neurosci. 3, 653–659 (2000)

    Article  CAS  Google Scholar 

  23. Eilers, J., Augustine, G. J. & Konnerth, A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373, 155–158 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M. & Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–588 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Vaughn, J. E. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989)

    Article  CAS  Google Scholar 

  26. McAllister, A. K. Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973 (2000)

    Article  CAS  Google Scholar 

  27. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. L. & Lichtman, J. W. Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219–225 (2000)

    Article  CAS  Google Scholar 

  28. Myhr, K. L., Lukasiewicz, P. D. & Wong, R. O. L. Mechanisms underlying developmental changes in the firing patterns of ON and OFF retinal ganglion cells during refinement of their central projections. J. Neurosci. 21, 8664–8671 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Sanes, J. Lichtman, A. M. Craig and S. Eglen for comments on the manuscript, and J. Demas for assistance with ballistic loading of calcium indicators. This work was supported by NIH, NSF, DFG and the Plum foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel O. L. Wong.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2002_BFnature00850_MOESM1_ESM.mov

Mov1.MOV: Movie of local and global [Ca2+]i rises in a retinal ganglion cell from an E13 Chick. (time-lapse recording: 1 s movie = 45 s real time) (MOV 14490 kb)

41586_2002_BFnature00850_MOESM2_ESM.pdf

Additional data demonstrating that the Ca2+ buffering capacity of the Ca2+ indicator Oregon Green 488 BAPTA-1 dextran did not effect Ca2+ signals or regulation of dendritic plasticity. (PDF 47 kb)

41586_2002_BFnature00850_MOESM3_ESM.mov

Mov2.MOV: Movie showing contact formation between a neurite of an amacrine cell (AC) and a dendrite of a ganglion cell (GC). Both cells are labeled with OGB1. (time-lapse recording: 1 s movie = 90 s real time) (MOV 13827 kb)

41586_2002_BFnature00850_MOESM4_ESM.pdf

Mov2.MOV: Movie showing contact formation between a neurite of an amacrine cell (AC) and a dendrite of a ganglion cell (GC). Both cells are labeled with OGB1. (time-lapse recording: 1 s movie = 90 s real time) (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, C., Myhr, K. & Wong, R. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181 (2002). https://doi.org/10.1038/nature00850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00850

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing