Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of a protein-conducting channel

Abstract

A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 Å. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The α-subunit has two linked halves, transmembrane segments 1–5 and 6–10, clamped together by the γ-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an ‘hourglass’ with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General architecture of the SecY complex.
Figure 2: Comparison with the 2D crystal structure of the E. coli SecY complex.
Figure 3: The channel pore.
Figure 4: Distribution of polar residues.
Figure 5: Signal-sequence-binding site and lateral gate.
Figure 6: Signal-sequence suppressor (prl) mutations.
Figure 7: Different stages of translocation of a secretory protein.

Similar content being viewed by others

References

  1. Matlack, K. E. S., Mothes, W. & Rapoport, T. A. Protein translocation—tunnel vision. Cell 92, 381–390 (1998)

    Article  CAS  Google Scholar 

  2. Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991)

    Article  CAS  Google Scholar 

  3. Crowley, K. S., Liao, S. R., Worrell, V. E., Reinhart, G. D. & Johnson, A. E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994)

    Article  CAS  Google Scholar 

  4. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996)

    Article  CAS  Google Scholar 

  5. Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3937–3982 (1994)

    Article  Google Scholar 

  6. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990)

    Article  CAS  Google Scholar 

  7. Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993)

    Article  CAS  Google Scholar 

  8. Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806–808 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561–570 (1995)

    Article  CAS  Google Scholar 

  10. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α-factor across the ER membrane. Cell 97, 553–564 (1999)

    Article  CAS  Google Scholar 

  11. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)

    Article  CAS  Google Scholar 

  12. Schiebel, E., Driessen, A. J. M., Hartl, F.-U. & Wickner, W. ΔµH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927–939 (1991)

    Article  CAS  Google Scholar 

  13. Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii.. J. Biol. Chem. 278, 12881–12887 (2003)

    Article  CAS  Google Scholar 

  14. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996)

    Article  CAS  Google Scholar 

  15. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 19, 2123–2126 (1997)

    Article  ADS  Google Scholar 

  16. Menetret, J. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)

    Article  CAS  Google Scholar 

  17. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)

    Article  CAS  Google Scholar 

  18. Morgan, D. G., Menetret, J. F., Neuhof, A., Rapoport, T. A. & Akey, C. W. Structure of the mammalian ribosome-channel complex at 17Å resolution. J. Mol. Biol. 324, 871–886 (2002)

    Article  CAS  Google Scholar 

  19. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Flower, A. M., Osborne, R. S. & Silhavy, T. J. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 14, 884–893 (1995)

    Article  CAS  Google Scholar 

  23. Murphy, C. K. & Beckwith, J. Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region. Proc. Natl Acad. Sci. USA 91, 2557–2561 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Satoh, Y., Mori, H. & Ito, K. Nearest neighbor analysis of the SecYEG complex. 2. Identification of a SecY-SecE cytosolic interface. Biochemistry 42, 7442–7447 (2003)

    Article  CAS  Google Scholar 

  25. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996)

    Article  CAS  Google Scholar 

  26. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamman, B. D., Hendershot, L. M. & Johnson, A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747–758 (1998)

    Article  CAS  Google Scholar 

  28. Kurzchalia, T. V. et al. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172, 663–668 (1988)

    Article  CAS  Google Scholar 

  29. Tani, K., Tokuda, H. & Mizushima, S. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265, 17341–17347 (1990)

    CAS  PubMed  Google Scholar 

  30. Mingarro, I., Nilsson, I., Whitley, P. & von Heijne, G. Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol. 1, 3 (2000)

    Article  CAS  Google Scholar 

  31. Kowarik, M., Kung, S., Martoglio, B. & Helenius, A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769–778 (2002)

    Article  CAS  Google Scholar 

  32. Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997)

    Article  CAS  Google Scholar 

  33. Jungnickel, B. & Rapoport, T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995)

    Article  CAS  Google Scholar 

  34. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)

    Article  CAS  Google Scholar 

  35. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)

    Article  CAS  Google Scholar 

  36. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli.. J. Bioenerg. Biomembr. 22, 291–310 (1990)

    Article  CAS  Google Scholar 

  37. Derman, A. I., Puziss, J. W., Bassford, P. J. & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879–888 (1993)

    Article  CAS  Google Scholar 

  38. Raden, D., Song, W. & Gilmore, R. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol. 150, 53–64 (2000)

    Article  CAS  Google Scholar 

  39. Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E. & Kalies, K. U. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J. 19, 1900–1906 (2000)

    Article  CAS  Google Scholar 

  40. Mori, H. & Ito, K. The Sec protein-translocation pathway. Trends Microbiol. 9, 494–500 (2001)

    Article  CAS  Google Scholar 

  41. Kim, Y. J., Rajapandi, T. & Oliver, D. SecA protein is exposed to the periplasmic surface of the E.coli inner membrane in its active state. Cell 78, 845–853 (1994)

    Article  CAS  Google Scholar 

  42. Heritage, D. & Wonderlin, W. F. Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J. Biol. Chem. 276, 22655–22662 (2001)

    Article  CAS  Google Scholar 

  43. Manting, E. H., van Der Does, C., Remigy, H., Engel, A. & Driessen, A. J. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852–861 (2000)

    Article  CAS  Google Scholar 

  44. Mori, H. et al. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278, 14257–14264 (2003)

    Article  CAS  Google Scholar 

  45. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)

    Article  CAS  Google Scholar 

  46. Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. & van der Does, C. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115–9125 (1999)

    Article  CAS  Google Scholar 

  47. van der Sluis, E. O., Nouwen, N. & Driessen, A. J. SecY–SecY and SecY–SecG contacts revealed by site-specific crosslinking. FEBS Lett. 527, 159–165 (2002)

    Article  CAS  Google Scholar 

  48. Yahr, T. L. & Wickner, W. T. Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J. 19, 4393–4401 (2000)

    Article  CAS  Google Scholar 

  49. Veenendaal, A. K., van der Does, C. & Driessen, A. J. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem. 276, 32559–32566 (2001)

    Article  CAS  Google Scholar 

  50. Plath, K., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Interactions between Sec-complex and prepro-α-factor during posttranslational protein transport into the ER. Mol. Biol. Cell (in the press)

Download references

Acknowledgements

We thank R. MacKinnon for advice and suggestions of reagents; F. Duong for clones; J. Walker for C43 cells; C. Vonrhein, T. Terwilliger and K. Cowtan for help with software; M. Becker, L. Berman and S. LaMarra for support at beamline X25 at the National Synchrotron Light Source (Brookhaven National Laboratory, supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences); A. Joachimiak, S. Ginell and R. Alkire for help at beamline 19ID at the Advanced Photon Source (supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences); and C. Ogata and M. Capel for help at beamline 8BM at the Advanced Photon Source (Northeastern Collaborative Access Team supported by an award from the National Center for Research Resources at the National Institutes of Health). We thank C. Akey, V. Ramakrishnan and particularly K. Matlack for critical reading of the manuscript. This work was supported by a fellowship from the Damon Runyon Cancer Research Foundation to W.M.C., and by fellowships from the Human Frontier Science Program Organization to I.C. and Y.M. E.H. was supported by grants from the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. T.A.R and S.C.H. are Howard Hughes Medical Institute Investigators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Rapoport.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, B., Clemons, W., Collinson, I. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). https://doi.org/10.1038/nature02218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02218

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing