Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The F-box protein TIR1 is an auxin receptor

Abstract

The plant hormone auxin regulates diverse aspects of plant growth and development. Recent studies indicate that auxin acts by promoting the degradation of the Aux/IAA transcriptional repressors through the action of the ubiquitin protein ligase SCFTIR1. The nature of the signalling cascade that leads to this effect is not known. However, recent studies indicate that the auxin receptor and other signalling components involved in this response are soluble factors. Using an in vitro pull-down assay, we demonstrate that the interaction between transport inhibitor response 1 (TIR1) and Aux/IAA proteins does not require stable modification of either protein. Instead auxin promotes the Aux/IAA–SCFTIR1 interaction by binding directly to SCFTIR1. We further show that the loss of TIR1 and three related F-box proteins eliminates saturable auxin binding in plant extracts. Finally, TIR1 synthesized in insect cells binds Aux/IAA proteins in an auxin-dependent manner. Together, these results indicate that TIR1 is an auxin receptor that mediates Aux/IAA degradation and auxin-regulated transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auxin-induced interaction between Aux/IAA and the SCF TIR1 is dependent on auxin concentration but not temperature.
Figure 2: Partially purified TIR1–Myc interacts with GST–IAA7 in an auxin-dependent manner.
Figure 3: [3H] IAA interacts with the SCFTIR1 complex.
Figure 4: TIR1 protein translated in vitro or expressed in insect cells interacts with GST–IAA7 in an auxin-dependent manner.
Figure 5: A small family of F-box proteins contributes to auxin binding.

Similar content being viewed by others

References

  1. Davies, P. J. in Plant Hormones Physiology, Biochemistry and Molecular Biology (ed. Davies, P. J.) 1–12 (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  2. Went, F. W. Wushstoff und wachstum. Rec. Trav. Bot. Neerl. 25, 1–116 (1928)

    Google Scholar 

  3. Weijers, D. & Jurgens, G. Auxin and embryo axis formation: the ends in sight? Curr. Opin. Plant Biol. 8, 32–37 (2005)

    Article  CAS  Google Scholar 

  4. Willemsen, V. & Scheres, B. Mechanisms of pattern formation in plant embryogenesis. Annu. Rev. Genet. 38, 587–614 (2004)

    Article  CAS  Google Scholar 

  5. Napier, R. M., David, K. M. & Perrot-Rechenmann, C. A short history of auxin-binding proteins. Plant Mol. Biol. 49, 339–348 (2002)

    Article  CAS  Google Scholar 

  6. Hagen, G. & Guilfoyle, T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373–385 (2002)

    Article  CAS  Google Scholar 

  7. Reed, J. W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6, 420–425 (2001)

    Article  CAS  Google Scholar 

  8. Liscum, E. & Reed, J. W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 49, 387–400 (2002)

    Article  CAS  Google Scholar 

  9. Zenser, N., Ellsmore, A., Leasure, C. & Callis, J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl Acad. Sci. USA 98, 11795–11800 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature 414, 271–276 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Tiwari, S. B., Wang, X. J., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809–2822 (2001)

    Article  CAS  Google Scholar 

  12. Tian, Q., Nagpal, P. & Reed, J. W. Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J. 36, 643–651 (2003)

    Article  CAS  Google Scholar 

  13. Ramos, J. A., Zenser, N., Leyser, H. M. & Callis, J. Rapid degradation of Aux/IAA proteins requires conserved amino acids of domain II and is proteasome-dependent. Plant Cell 13, 2349–2360 (2001)

    Article  CAS  Google Scholar 

  14. Dharmasiri, N., Dharmasiri, S., Jones, A. M. & Estelle, M. Auxin action in a cell-free system. Curr. Biol. 13, 1418–1422 (2003)

    Article  CAS  Google Scholar 

  15. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl Acad. Sci. USA 101, 12381–12386 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Ouellet, F., Overvoorde, P. J. & Theologis, A. IAA17/AXR3. Biochemical insight into an auxin mutant phenotype. Plant Cell 13, 829–842 (2001)

    Article  CAS  Google Scholar 

  17. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999)

    Article  CAS  Google Scholar 

  18. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739–751 (2004)

    Article  CAS  Google Scholar 

  20. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Yang, X. et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J. 40, 772–782 (2004)

    Article  CAS  Google Scholar 

  22. Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 11519–11524 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Gray, W. M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678–1691 (1999)

    Article  CAS  Google Scholar 

  24. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Kinoshita, T. et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167–171 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Frias, I. et al. A major isoform of the maize plasma membrane H(+ )-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8, 1533–1544 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Blatt, M. R. & Thiel, G. K + channels of stomatal guard cells: bimodal control of the K + inward-rectifier evoked by auxin. Plant J. 5, 55–68 (1994)

    Article  CAS  Google Scholar 

  28. Philippar, K. et al. Auxin-induced K + channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl Acad. Sci. USA 96, 12186–12191 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Luthen, H., Claussen, M. & Bottger, M. Growth: progress in auxin research. Prog. Bot. 60, 315–340 (1999)

    Article  CAS  Google Scholar 

  30. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Dumas for technical assistance and C. Leblanc for help with insect cell culture. In addition, we thank S. Kepinski and O. Leyser for discussions. Research in the authors' laboratory is supported by grants from the NIH, the NSF and the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Estelle.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005). https://doi.org/10.1038/nature03543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03543

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing