Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Invariant visual representation by single neurons in the human brain

Abstract

It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear1,2,3,4,5,6. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show some degree of invariance to metric properties such as the stimulus size, position and viewing angle2,4,7,8,9,10,11,12. We have previously shown that neurons in the human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes13,14. Here we report on a remarkable subset of MTL neurons that are selectively activated by strikingly different pictures of given individuals, landmarks or objects and in some cases even by letter strings with their names. These results suggest an invariant, sparse and explicit code, which might be important in the transformation of complex visual percepts into long-term and more abstract memories.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A single unit in the left posterior hippocampus activated exclusively by different views of the actress Jennifer Aniston.
Figure 2: A single unit in the right anterior hippocampus that responds to pictures of the actress Halle Berry (conventions as in Fig. 1).
Figure 3: A multi-unit in the left anterior hippocampus that responds to photographs of the Sydney Opera House and the Baha'i Temple (conventions as in Fig. 1).
Figure 4: Distribution of the area under the ROC curves for the 51 units (out of 132 responsive units) showing an invariant representation.

Similar content being viewed by others

References

  1. Barlow, H. Single units and sensation: a neuron doctrine for perception. Perception 1, 371–394 (1972)

    Article  CAS  Google Scholar 

  2. Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969)

    Article  ADS  CAS  Google Scholar 

  3. Konorski, J. Integrative Activity of the Brain (Univ. Chicago Press, Chicago, 1967)

    Google Scholar 

  4. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996)

    Article  CAS  Google Scholar 

  5. Riesenhuber, M. & Poggio, T. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–168 (2002)

    Article  CAS  Google Scholar 

  6. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferior temporal cortex. Science 256, 1327–1331 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995)

    Article  CAS  Google Scholar 

  8. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb. Cortex 3, 270–288 (1995)

    Article  Google Scholar 

  9. Perrett, D., Rolls, E. & Caan, W. Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982)

    Article  CAS  Google Scholar 

  10. Schwartz, E. L., Desimone, R., Albright, T. D. & Gross, C. G. Shape recognition and inferior temporal neurons. Proc. Natl Acad. Sci. USA 80, 5776–5778 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996)

    Article  CAS  Google Scholar 

  12. Miyashita, Y. & Chang, H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331, 68–71 (1988)

    Article  ADS  CAS  Google Scholar 

  13. Fried, I., MacDonald, K. A. & Wilson, C. Single neuron activity in human hippocampus and amygdale during recognition of faces and objects. Neuron 18, 753–765 (1997)

    Article  CAS  Google Scholar 

  14. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000)

    Article  CAS  Google Scholar 

  15. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User's Guide (Cambridge Univ. Press, New York, 1991)

    Google Scholar 

  16. Picton, T. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479 (1992)

    Article  CAS  Google Scholar 

  17. Halgren, E., Marinkovic, K. & Chauvel, P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr. Clin. Neurophysiol. 106, 156–164 (1998)

    Article  CAS  Google Scholar 

  18. McCarthy, G., Wood, C. C., Williamson, P. D. & Spencer, D. D. Task-dependent field potentials in human hippocampal formation. J. Neurosci. 9, 4253–4268 (1989)

    Article  CAS  Google Scholar 

  19. Saleem, K. S. & Tanaka, K. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J. Neurosci. 16, 4757–4775 (1996)

    Article  CAS  Google Scholar 

  20. Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdale and striatum. Seminar Neurosci. 8, 3–12 (1996)

    Article  MathSciNet  Google Scholar 

  21. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)

    Article  CAS  Google Scholar 

  22. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000)

    Article  CAS  Google Scholar 

  24. Hampson, R. E., Pons, P. P., Stanford, T. R. & Deadwyler, S. A. Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. Proc. Natl Acad. Sci. USA 101, 3184–3189 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004)

    Article  CAS  Google Scholar 

  26. Mishashita, Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 (1988)

    Article  ADS  Google Scholar 

  27. Koch, C. The Quest for Consciousness: A Neurobiological Approach (Roberts, Englewood, Colorado, 2004)

    Google Scholar 

  28. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Quian Quiroga, R., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and super-paramagnetic clustering. Neural Comput. 16, 1661–1687 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank all patients for their participation; P. Sinha for drawing some faces; colleagues for providing pictures; I. Wainwright for administrative assistance; and E. Behnke, T. Fields, E. Ho, E. Isham, A. Kraskov, P. Steinmetz, I. Viskontas and C. Wilson for technical assistance. This work was supported by grants from the NINDS, NIMH, NSF, DARPA, the Office of Naval Research, the W.M. Keck Foundation Fund for Discovery in Basic Medical Research, a Whiteman fellowship (to G.K.), the Gordon Moore Foundation, the Sloan Foundation, and the Swartz Foundation for Computational Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Quian Quiroga.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This contains Supplementary Methods and Legends to accompany Supplementary Figures S1-11. (PDF 4435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroga, R., Reddy, L., Kreiman, G. et al. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005). https://doi.org/10.1038/nature03687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03687

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing