Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus

Abstract

Animals and higher plants express endogenous peptide antibiotics called defensins. These small cysteine-rich peptides are active against bacteria, fungi and viruses. Here we describe plectasin—the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin has primary, secondary and tertiary structures that closely resemble those of defensins found in spiders, scorpions, dragonflies and mussels. Recombinant plectasin was produced at a very high, and commercially viable, yield and purity. In vitro, the recombinant peptide was especially active against Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin showed extremely low toxicity in mice, and cured them of experimental peritonitis and pneumonia caused by S. pneumoniae as efficaciously as vancomycin and penicillin. These findings identify fungi as a novel source of antimicrobial defensins, and show the therapeutic potential of plectasin. They also suggest that the defensins of insects, molluscs and fungi arose from a common ancestral gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similarity of plectasin to selected invertebrate defensins.
Figure 2: In vitro and in vivo properties of plectasin.
Figure 3: In vivo properties of plectasin.

Similar content being viewed by others

References

  1. Tossi, A., Sandri, L. & Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 55, 4–30 (2000)

    Article  CAS  Google Scholar 

  2. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Boman, H. G. Innate immunity and the normal microflora. Immunol. Rev. 173, 5–16 (2000)

    Article  CAS  Google Scholar 

  4. Matsuzaki, K. Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta Biomembr. 1462, 1–10 (1999)

    Article  CAS  Google Scholar 

  5. Yang, L., Weiss, T. M., Lehrer, R. I. & Huang, H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys. J. 79, 2002–2009 (2000)

    Article  CAS  Google Scholar 

  6. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr. 1462, 55–70 (1999)

    Article  CAS  Google Scholar 

  7. Park, C. B., Kim, H. S. & Kim, S. C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257 (1998)

    Article  CAS  Google Scholar 

  8. Kragol, G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026 (2001)

    Article  CAS  Google Scholar 

  9. Del Castillo, F. J., Del Castillo, I. & Moreno, F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol. 183, 2137–2140 (2001)

    Article  CAS  Google Scholar 

  10. Gennaro, R., Zanetti, M., Benincasa, M., Podda, E. & Miani, M. Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr. Pharm. Des. 8, 763–778 (2002)

    Article  CAS  Google Scholar 

  11. Lehrer, R. I. & Ganz, T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9, 18–22 (2002)

    Article  Google Scholar 

  12. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004)

    Article  Google Scholar 

  13. Lehrer, R. I. Primate defensins. Nature Rev. Microbiol. 2, 727–738 (2004)

    Article  CAS  Google Scholar 

  14. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003)

    Article  CAS  Google Scholar 

  15. Selsted, M. E., Szklarek, D. & Lehrer, R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45, 150–154 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Selsted, M. E., Szklarek, D., Ganz, T. & Lehrer, R. I. Activity of rabbit leukocyte peptides against Candida albicans. Infect. Immun. 49, 202–206 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lehrer, R. I., Daher, K., Ganz, T. & Selsted, M. E. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J. Virol. 54, 467–472 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daher, K., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cole, A. M. Minidefensins and other antimicrobial peptides: candidate anti-HIV microbicides. Expert Opin. Ther. Targets 7, 329–341 (2003)

    Article  CAS  Google Scholar 

  20. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999)

    Article  CAS  Google Scholar 

  21. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Becker, F. et al. Development of in vitro transposon assisted signal sequence trapping and its use in screening Bacillus halodurans C125 and Sulfolobus solfataricus P2 gene libraries. J. Microbiol. Methods 57, 123–133 (2004)

    Article  CAS  Google Scholar 

  23. Schnorr, K., Hansen, M. T., Mygind, P. H., Segura, D. R. & Kristensen, H.-H. Novel plectasin polypeptide having antimicrobial activity, useful for (for example) killing or inhibiting microbial cell growth, for use as a medicament and as antimicrobial therapeutic or prophylactic agent. International patent application WO2003044049–A1 (2003).

  24. Froy, O. & Gurevitz, M. Arthropod defensins illuminate the divergence of scorpion neurotoxins. J. Pept. Sci. 10, 714–718 (2004)

    Article  CAS  Google Scholar 

  25. Yang, Y. S. et al. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39, 14436–14447 (2000)

    Article  CAS  Google Scholar 

  26. Landon, C., Sodano, P., Hetru, C., Hoffmann, J. & Ptak, M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 6, 1878–1884 (1997)

    Article  CAS  Google Scholar 

  27. Volkoff, A. N. et al. Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects? Gene 319, 43–53 (2003)

    Article  CAS  Google Scholar 

  28. Bulet, P. et al. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur. J. Biochem. 209, 977–984 (1992)

    Article  CAS  Google Scholar 

  29. Doolittle, R. F., Feng, D. F., Tsang, S., Cho, G. & Little, E. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271, 470–477 (1996)

    Article  ADS  CAS  Google Scholar 

  30. The Clinical and Laboratory Standards Institute (formerly the National Commmittee for Clinical Laboratory Standards). Guideline M7–A6: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. http://www.nccls.org.

  31. Steinberg, D. A. & Lehrer, R. I. in Methods in Molecular Biology Vol. 78 (ed. Schafer, W. M.) 169–186 (Humana, Totowa, New Jersey, 1997)

    Google Scholar 

  32. Frimodt-Møller, N., Knudsen, J. D. & Espersen, F. in Handbook of Animal Models of Infection (eds Zak, O. & Sande, M. A.) 127–136 (Academic, London, 1999)

    Book  Google Scholar 

  33. Erlendsdottir, H. et al. Penicillin pharmacodynamics in four experimental pneumococcal infection models. Antimicrob. Agents Chemother. 45, 1078–1085 (2001)

    Article  CAS  Google Scholar 

  34. Bayles, K. W. The bactericidal action of penicillin: New clues to an unsolved mystery. Trends Microbiol. 8, 274–278 (2000)

    Article  CAS  Google Scholar 

  35. Williams, D. H. & Bardsley, B. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew. Chem. Int. Edn Engl. 38, 1173–1193 (1999)

    CAS  Google Scholar 

  36. Nakajima, Y. et al. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim. Biophys. Acta 1624, 125–130 (2003)

    Article  CAS  Google Scholar 

  37. Hjort, C. M. in Genetically Engineered Food: Methods and Detection (ed. Heller, K. J.) 86–99 (Wiley, 2003)

    Google Scholar 

  38. Yoder, W. T. & Lehmbeck, J. in Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine (eds Tkacz, J. S. & Lange, L.) 201–219 (Kluwer Academic/Plenum, New York, 2004)

    Book  Google Scholar 

  39. The Advisory Committee on Immunization Practices. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly Rep. 46, 1–24 (1997)

    Google Scholar 

  40. Klugman, K. P. Bacteriological evidence of antibiotic failure in pneumococcal lower respiratory tract infections. Eur. Respir. J. 20 (suppl.), 3s–8s (2002)

    Article  Google Scholar 

  41. Fleming, A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. Br. J. Exp. Pathol. 10, 226–236 (1929)

    CAS  PubMed Central  Google Scholar 

  42. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979)

    Article  CAS  Google Scholar 

  43. Ludvigsen, S., Thim, L., Blom, A. M. & Wulff, B. S. Solution structure of the satiety factor, CART, reveals new functionality of a well-known fold. Biochemistry 40, 9082–9088 (2001)

    Article  CAS  Google Scholar 

  44. Kjær, M., Andersen, K. V. & Poulsen, F. M. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program PRONTO. Methods Enzymol. 239, 288–307 (1994)

    Article  Google Scholar 

  45. Laskowski, R. A., Rullmann, J. A., Macarthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)

    Article  CAS  Google Scholar 

  46. DeLano, W. L. The PyMOL Molecular Graphics System http://www.pymol.org (DeLano Scientific, San Carlos, California, 2002)

    Google Scholar 

Download references

Acknowledgements

We thank I. Ellingsgaard, A. L. Hansen, M. Markvardsen, J. Theil, A. Blom, B. Nielsen, B. Cherry, S. Otani and F. Hansen for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Henrik Kristensen.

Ethics declarations

Competing interests

R.L.F., S.L., N.F.-M., R.I.L. and M.Z. are consultants to Novozymes, and the other authors (P.H.M., K.M.S., M.T.H., C.P.S., D.R., S.B., B.C., L.D.M., O.T., D.Y., S.G.E.-J., M.V.S., B.E.C., S.K. and H.-H.K.) are employees of Novozymes. K.M.S., M.T.H., P.H.M., D.R. Segura and H.-H.K. have filed a patent application that covers this work (ref. 23).

Supplementary information

Supplementary Notes

This file contains Supplementary Figures S1–S5, Supplementary Tables S1 and S2 and Supplemen-tary Methods. (DOC 649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mygind, P., Fischer, R., Schnorr, K. et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980 (2005). https://doi.org/10.1038/nature04051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04051

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing