Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Copper-containing plastocyanin used for electron transport by an oceanic diatom

Abstract

The supply of some essential metals to pelagic ecosystems is less than the demand, so many phytoplankton have slow rates of photosynthetic production and restricted growth1. The types and amounts of metals required by phytoplankton depends on their evolutionary history2 and on their adaptations to metal availability3,4, which varies widely among ocean habitats. Diatoms, for example, need considerably less iron (Fe) to grow than chlorophyll-b-containing taxa2, and the oceanic species demand roughly one-tenth the amount of coastal strains5,6,7. Like Fe, copper (Cu) is scarce in the open sea, but notably higher concentrations of it are required for the growth of oceanic than of coastal isolates8. Here we report that the greater Cu requirement in an oceanic diatom, Thalassiosira oceanica, is entirely due to a single Cu-containing protein, plastocyanin, which—until now—was only known to exist in organisms with chlorophyll b and cyanobacteria. Algae containing chlorophyll c, including the closely related coastal species T. weissflogii, are thought to lack plastocyanin and contain a functionally equivalent Fe-containing homologue, cytochrome c6 (ref. 9). Copper deficiency in T. oceanica inhibits electron transport regardless of Fe status, implying a constitutive role for plastocyanin in the light reactions of photosynthesis in this species. The results suggest that selection pressure imposed by Fe limitation has resulted in the use of a Cu protein for photosynthesis in an oceanic diatom. This biochemical switch reduces the need for Fe and increases the requirement for Cu, which is relatively more abundant in the open sea.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth rate of Thalassiosira as a function of intracellular Cu concentration.
Figure 2: Isolation of plastocyanin from the oceanic diatom Thalassiosira oceanica.
Figure 3: PSII fluorescence transients of Thalassiosira.

Similar content being viewed by others

References

  1. Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–293 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Cullen, J. T., Lane, T. W., Morel, F. M. M. & Sherrell, R. M. Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402, 165–167 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Ryther, J. H. & Kramer, D. D. Relative iron requirements of some coastal and offshore plankton algae. Ecology 42, 444–446 (1961)

    Article  CAS  Google Scholar 

  6. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Low iron requirements for growth in oceanic phytoplankton. Nature 351, 55–57 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Maldonado, M. T. & Price, N. M. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141, 161–172 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Peers, G., Quesnel, S.-A. & Price, N. M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50, 1149–1158 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Raven, J. A., Evans, M. C. W. & Korb, R. E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60, 111–149 (1999)

    Article  CAS  Google Scholar 

  10. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Bruland, K. W. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 47, 176–198 (1980)

    Article  ADS  CAS  Google Scholar 

  12. Moffett, J. W., Brand, L. E., Croot, P. L. & Barbeau, K. A. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol. Oceanogr. 42, 789–799 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Tortell, P. D. & Price, N. M. Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira. Mar. Ecol. Prog. Ser. 138, 245–254 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Sunda, W. G. & Huntsman, S. A. Regulation of copper concentrations in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol. Oceanogr. 40, 132–137 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Inda, L. A., Erdner, D. L., Peleato, M. L. & Anderson, D. M. Cytochrome c6 isolated from the marine diatom Thalassiosira weissflogii. Phytochemistry 51, 1–4 (1999)

    Article  CAS  Google Scholar 

  16. Papageorgiou, G. C. & Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis (Kluwer Academic, Dordrecht, 2004)

  17. Weigel, M. et al. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J. Biol. Chem. 278, 31286–31289 (2003)

    Article  CAS  Google Scholar 

  18. Quinn, J. M. & Merchant, S. Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol. 297, 263–279 (1998)

    Article  CAS  Google Scholar 

  19. Schottler, M. A., Kirchhoff, H. & Weis, E. The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco. Plant Physiol. 136, 4265–4274 (2004)

    Article  Google Scholar 

  20. da Silva, J. J. R. F. & Williams, R. J. P. The Biological Chemistry of the Elements (Oxford Univ. Press, New York, 2001)

    Google Scholar 

  21. La Fontaine, S. et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot. Cell 1, 736–757 (2002)

    Article  CAS  Google Scholar 

  22. Armbrust, E. V. & Galindo, H. M. Rapid evolution of a sexual reproduction gene in centric diatoms of the genus Thalassiosira. Appl. Environ. Microbiol. 67, 3501–3513 (2001)

    Article  CAS  Google Scholar 

  23. Archibald, J. M., Rogers, M. B., Topp, M., Ishida, K. & Keeling, P. J. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc. Natl Acad. Sci. USA 100, 7678–7683 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Strzepek, R. F. Photosynthetic Iron Requirements of Marine Diatoms. Thesis, Univ. British Columbia (2003)

    Google Scholar 

  25. Moffett, J. W., Zika, R. G. & Brand, L. E. Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res. 37, 27–36 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Coale, K. H. & Bruland, K. W. Copper complexation in the Northeast Pacific. Limnol. Oceanogr. 33, 1084–1101 (1988)

    Article  ADS  CAS  Google Scholar 

  27. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991)

    Article  ADS  CAS  Google Scholar 

  28. Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of Fe-deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Chang, S. I. & Reinfelder, J. R. Bioaccumulation, subcellular distribution, and trophic transfer of copper in a coastal marine diatom. Environ. Sci. Technol. 34, 4931–4935 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Navarro, J. A., Hervas, M. & De la Rosa, M. A. in Photosynthesis Research Protocols (ed. Carpentier, R.) 79–93 (Humana, Totowa, New Jersey, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

We thank R. Popovic for use of the PEA and M. R. Di Falco for purifying the trypsin-digested peptides. This work was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Centre for Environmental Bio-Inorganic Chemistry (CEBIC, Princeton University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Peers.

Ethics declarations

Competing interests

The sequences reported here have been deposited in the UniProt knowledgebase under accession number P84800. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures and Legends 1–3 and Supplementary Table 1. (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peers, G., Price, N. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006). https://doi.org/10.1038/nature04630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04630

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing