Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis

Abstract

Polarized cellular distribution of the phytohormone auxin and its carriers is essential for normal plant growth and development. Polar auxin transport 1,2 is maintained by a network of auxin influx (AUX)3 and efflux (PIN)1,2,4,5,6 carriers. Both auxin transport and PIN protein cycling between the plasma membrane and endosomes require the activity of the endosomal GNOM1,2,7,8; however, intracellular routes taken by these carriers remain largely unknown. Here we show that Arabidopsis thaliana SORTING NEXIN 1 (AtSNX1) is involved in the auxin pathway and that PIN2, but not PIN1 or AUX1, is transported through AtSNX1-containing endosomes. We demonstrate that the snx1-null mutant exhibits multiple auxin-related defects and that loss of function of AtSNX1 severely enhances the phenotype of a weak gnom mutant. In root cells, we further show that AtSNX1 localizes to an endosomal compartment distinct from GNOM-containing endosomes, and that PIN2 accumulates in this compartment after treatment with the phosphatidylinositol-3-OH kinase inhibitor wortmannin or after a gravity stimulus. Our data reveal the existence of a novel endosomal compartment involved in PIN2 endocytic sorting and plant development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AtSNX1 is localized to an endosomal compartment.
Figure 2: AtSNX1 defines a new endosomal compartment that transports PIN2.
Figure 3: Wortmannin effects on seedling development, auxin distribution and PIN localization.

Similar content being viewed by others

References

  1. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friml, J., Wiśniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002)

    Article  ADS  PubMed  Google Scholar 

  5. Friml, J. et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426, 147–153 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Petrasek, J. et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Geldner, N. et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Vanoosthuyse, V., Tichtinsky, G., Dumas, C., Gaude, T. & Cock, J. M. Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol. 133, 919–929 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins—unifying trends and new perspectives. Traffic 6, 75–82 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandizzi, F., Snapp, E. L., Roberts, A. G., Lippincott-Schwartz, J. & Hawes, C. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14, 1293–1309 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bassham, D. C., Sanderfoot, A. A., Kovaleva, V., Zheng, H. & Raikhel, N. V. AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11, 2251–2265 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paciorek, T. et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435, 1251–1256 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ueda, T., Uemura, T., Sato, M. H. & Nakano, A. Functional differentiation of endosomes in Arabidopsis cells. Plant J. 40, 783–789 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Grebe, M. et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378–1387 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol. 3, 658–666 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Zhong, Q. et al. Endosomal localization and function of sorting nexin 1. Proc. Natl Acad. Sci. USA 99, 6767–6772 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benkova, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17, 525–536 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abas, L. et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biol. 8, 249–256 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Swarup, R. et al. Structure–function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069–3083 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Vieten, A. et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521–4531 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R. & Rodriguez-Boulan, E. Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol. 17, 423–434 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003)

    Article  ADS  PubMed  Google Scholar 

  27. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Max Planck and SALK Institute for providing the insertion mutant lines. We thank C. Dumas for hosting T.G.'s team in the Reproduction et Développement des Plantes laboratory. We acknowledge A. Chaboud for providing pGIInK::mRFP plasmids; C. Hawes for providing ERD2–GFP and ST-GFP plasmids; T. Guilfoyle for providing the DR5::GUS transgenic line; G. Jurgens for providing gnomB/E mutant and GNOM–GFP lines; J. Friml for supplying the PIN1–GFP line; B. Scheres for the gift of the PIN2–GFP line; M. Bennett for the gift of the AUX1–YFP line and NASC for providing the DR5rev::GFP line. We are grateful to R. Tsien for the gift of mRFP1. We thank C. Scutt for critical reading of the manuscript, N. Paris for helpful discussions and C. Lionnet and F. Simian for technical assistance in confocal microscopy. This work was supported by the Action concertée incitative Biologie du Développement of the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gaude.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Isolation of the AtSNX1 gene and molecular characterization of snx1mutant.

Supplementary Figure 2

Atsnx1 mutant roots have auxin-related defects.

Supplementary Figure 3

snx1-1 is rescued by transgenic expression of AtSNX1-GFP and AtSNX1-mRFP.

Supplementary Figure 4

Altered DR5::GUS expression in snx1 roots.

Supplementary Figure 5

Genetic interaction between gnomB/E and snx1.

Supplementary Figure 6

AtSNX1-GFP and GNOM-GFP exhibit different sensitivity to Wm.

Supplementary Figure 7

AUX1 is not sensitive to BFA and Wm.

Supplementary Figure 8

Long-term Wm treatment affects AtSNX1-containing endosome morphology.

Supplementary Figure 9

Quantitative effect of different Wortmannin concentrations on primary root elongation.

Supplementary Notes

Includes Supplementary Methods and additional references.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaillais, Y., Fobis-Loisy, I., Miège, C. et al. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443, 106–109 (2006). https://doi.org/10.1038/nature05046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05046

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing