Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis

Abstract

XPF–ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF–ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular characterization of progeroid patient ‘XFE’.
Figure 2: Progeroid characteristics of Ercc1 -/- mice.
Figure 3: Confirmation of microarray expression data by qRT-PCR and physiologic endpoints.
Figure 4: Growth-hormone–IGF1 suppression is a normal physiological response to DNA damage.
Figure 5: Comparison of the physiological changes due to DNA repair defects and ageing.

Similar content being viewed by others

References

  1. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003)

    Article  CAS  Google Scholar 

  2. Kipling, D., Davis, T., Ostler, E. L. & Faragher, R. G. What can progeroid syndromes tell us about human aging? Science 305, 1426–1431 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Hasty, P. & Vijg, J. Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 3, 55–65 (2004)

    Article  CAS  Google Scholar 

  4. Miller, R. A. Evaluating evidence for aging. Science 310, 441–443; author reply. 441–443 (2005)

    Article  CAS  Google Scholar 

  5. Kirkwood, T. B. & Holliday, R. The evolution of ageing and longevity. Proc. R. Soc. Lond. B 205, 531–546 (1979)

    Article  ADS  CAS  Google Scholar 

  6. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005)

    Article  CAS  Google Scholar 

  7. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005)

    Article  CAS  Google Scholar 

  8. Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005)

    Article  CAS  Google Scholar 

  9. Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. J. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R. et al.) 677–703 (McGraw-Hill, New York, 2001)

    Google Scholar 

  10. Mitchell, J. R., Hoeijmakers, J. H. & Niedernhofer, L. J. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr. Opin. Cell Biol. 15, 232–240 (2003)

    Article  CAS  Google Scholar 

  11. Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822 (1996)

    Article  CAS  Google Scholar 

  12. Enzlin, J. H. & Scharer, O. D. The active site of the DNA repair endonuclease XPF–ERCC1 forms a highly conserved nuclease motif. EMBO J. 21, 2045–2053 (2002)

    Article  CAS  Google Scholar 

  13. Tsodikov, O. V., Enzlin, J. H., Scharer, O. D. & Ellenberger, T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF–ERCC1. Proc. Natl Acad. Sci. USA 102, 11236–11241 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Niedernhofer, L. J. et al. The structure-specific endonuclease Ercc1–Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004)

    Article  CAS  Google Scholar 

  15. Matsumura, Y., Nishigori, C., Yagi, T., Imamura, S. & Takebe, H. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum. Mol. Genet. 7, 969–974 (1998)

    Article  CAS  Google Scholar 

  16. Sijbers, A. M. et al. Homozygous R788W point mutation in the XPF gene of a patient with xeroderma pigmentosum and late-onset neurologic disease. J. Invest. Dermatol. 110, 832–836 (1998)

    Article  CAS  Google Scholar 

  17. McWhir, J., Selfridge, J., Harrison, D. J., Squires, S. & Melton, D. W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–224 (1993)

    Article  CAS  Google Scholar 

  18. Weeda, G. et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–439 (1997)

    Article  CAS  Google Scholar 

  19. Tian, M., Shinkura, R., Shinkura, N. & Alt, F. W. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24, 1200–1205 (2004)

    Article  CAS  Google Scholar 

  20. de Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995)

    Article  ADS  CAS  Google Scholar 

  21. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J. 24, 861–871 (2005)

    Article  CAS  Google Scholar 

  22. Biggerstaff, M., Szymkowski, D. E. & Wood, R. D. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12, 3685–3692 (1993)

    Article  CAS  Google Scholar 

  23. Hansen, M., Hsu, A. L., Dillin, A. & Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 1, 119–128 (2005)

    Article  CAS  Google Scholar 

  24. Carter, C. S., Ramsey, M. M. & Sonntag, W. E. A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet. 18, 295–301 (2002)

    Article  CAS  Google Scholar 

  25. Lombardi, G., Di Somma, C., Rota, F. & Colao, A. Associated hormonal decline in aging: is there a role for GH therapy in aging men?. J. Endocrinol. Invest. 28, 99–108 (2005)

    CAS  PubMed  Google Scholar 

  26. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999)

    Article  CAS  Google Scholar 

  27. Cao, S. X., Dhahbi, J. M., Mote, P. L. & Spindler, S. R. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl Acad. Sci. USA 98, 10630–10635 (2001)

    Article  ADS  CAS  Google Scholar 

  28. van der Pluijm, I. et al. Impaired genome maintenance suppresses the GH/IGF1 axis in Cockayne syndrome mice. PLoS Biol. doi:10.137/journal.pbio.0050002 (in the press).

  29. Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171 (2000)

    Article  CAS  Google Scholar 

  30. Lee, P. D., Conover, C. A. & Powell, D. R. Regulation and function of insulin-like growth factor-binding protein-1. Proc. Soc. Exp. Biol. Med. 204, 4–29 (1993)

    Article  CAS  Google Scholar 

  31. Campisi, J. Aging, tumor suppression and cancer: high wire-act!. Mech. Ageing Dev. 126, 51–58 (2005)

    Article  CAS  Google Scholar 

  32. Sonntag, W. E. et al. Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146, 2920–2932 (2005)

    Article  CAS  Google Scholar 

  33. Wyllie, F. S. et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nature Genet. 24, 16–17 (2000)

    Article  CAS  Google Scholar 

  34. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004)

    Article  CAS  Google Scholar 

  35. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006)

    Article  CAS  Google Scholar 

  36. Kasai, H., Iwamoto-Tanaka, N. & Fukada, S. DNA modifications by the mutagen glyoxal: adduction to G and C, deamination of C and GC and GA cross-linking. Carcinogenesis 19, 1459–1465 (1998)

    Article  CAS  Google Scholar 

  37. Niedernhofer, L. J., Daniels, J. S., Rouzer, C. A., Greene, R. E. & Marnett, L. J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278, 31426–31433 (2003)

    Article  CAS  Google Scholar 

  38. Huang, Q. et al. Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol. Sci. 63, 196–207 (2001)

    Article  CAS  Google Scholar 

  39. Ghoshal, A. K., Xu, Z., Wood, G. A. & Archer, M. C. Induction of hepatic insulin-like growth factor binding protein-1 (IGFBP-1) in rats by dietary n-6 polyunsaturated fatty acids. Proc. Soc. Exp. Biol. Med. 225, 128–135 (2000)

    Article  CAS  Google Scholar 

  40. Takahashi, Y., Kushiro, M., Shinohara, K. & Ide, T. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. Biochim. Biophys. Acta 1631, 265–273 (2003)

    Article  CAS  Google Scholar 

  41. Zhu, X. D. et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 12, 1489–1498 (2003)

    Article  CAS  Google Scholar 

  42. Dollé, M. E. et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res. 596, 22–35 (2006)

    Article  Google Scholar 

  43. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005)

    Article  CAS  Google Scholar 

  44. Maccormick, R. E. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med. Hypotheses 67, 212–215 (2006)

    Article  CAS  Google Scholar 

  45. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006)

    Article  CAS  Google Scholar 

  46. Spindler, S. R. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech. Ageing Dev. 126, 960–966 (2005)

    Article  CAS  Google Scholar 

  47. Kirkwood, T. B. & Shanley, D. P. Caloric restriction, hormesis and life history plasticity. Hum. Exp. Toxicol. 19, 338–339 (2000)

    Article  CAS  Google Scholar 

  48. Muller, E. E., Locatelli, V. & Cocchi, D. Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)

    Article  CAS  Google Scholar 

  49. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Aging Program, the Dutch Cancer Society, the Dutch Science Foundation (NWO) through the foundation of the Research Institute Diseases of the Elderly, as well as grants from SenterNovem IOP-Genomics, the NIH, the NIA Program Project, the NIEHS center, the EC, and Human Frontier Science Program. J.H.J.H. is chief scientific officer of DNage. L.J.N. was supported by a postdoctoral fellowship from the American Cancer Society and subsequently by the NCI and The Ellison Medical Foundation, along with A.R.R. and A.A. We thank P. Nair, F. J. Calderon, R. B. Calder and D. Muñoz-Medellin of the Sam and Ann Barshop Center, University of Texas Health Science Center, for their contributions to the preliminary microarray analysis.

Author Contributions Human cells characterized by L.J.N., A.R., E.A., H.O., A.A., A.F.T., W.V. and N.G.J.J. Experimental analysis of mice by L.J.N., A.S.L., A.R.R. and R.O. Microarray analysis by L.J.N., G.A.G., G.T.J. v. d. H. and J.V. Radiography by W. v. L. Clinical services by P.M. and W.J.K. Manuscript prepared by L.J.N., G.A.G and J.H.J.H.

The expression data for Ercc1-/- mice are deposited in ArrayExpress 〈http://www.ebi.ac.uk/arrayexpress/〉, a public repository for microarray data, which stores Minimum Information for Microarray Experiments (MIAME)-compliant data in accordance with Microarray Gene Expression Data (MGED) recommendations. The accession number is E-MEXP-834. The accession number for the expression data on the aged mice is E-MEXP-839 (ref. 28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. J. Hoeijmakers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Notes, Supplementary Methods, Supplementary Figures 1-5 with legends and Supplementary Tables 1-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedernhofer, L., Garinis, G., Raams, A. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006). https://doi.org/10.1038/nature05456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05456

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing