Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the sodium–potassium pump

Abstract

The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 Å resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the α-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The β- and γ-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices αM7/αM10 and αM9, respectively. The γ-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the α-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of Na + ,K + -ATPase used for crystallization.
Figure 2: Crystal packing and electron-density map.
Figure 3: Architecture of the Na + ,K + -ATPase αβγ complex and the K + /Rb + sites.
Figure 4: Interactions between α and β and between α and γ transmembrane helices.
Figure 5: Structural comparison of the Na + ,K + ATPase with the Ca 2+ -ATPase.
Figure 6: The C-terminal switch.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Skou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 1000, 439–446 (1957)

    Google Scholar 

  2. Post, R. L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972)

    CAS  PubMed  Google Scholar 

  3. Glynn, I. M. Annual review prize lecture. 'All hands to the sodium pump'. J. Physiol. (Lond.) 462, 1–30 (1993)

    Article  CAS  Google Scholar 

  4. Gadsby, D. C., Rakowski, R. F. & De Weer, P. Extracellular access to the Na,K Pump: pathway similar to ion channel. Science 260, 100–103 (1993)

    Article  CAS  ADS  Google Scholar 

  5. Apell, H. J. & Karlish, S. J. Functional properties of Na,K-ATPase, and their structural implications, as detected with biophysical techniques. J. Membr. Biol. 180, 1–9 (2001)

    Article  CAS  Google Scholar 

  6. Geering, K. The functional role of β subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33, 425–438 (2001)

    Article  CAS  Google Scholar 

  7. Lutsenko, S. & Kaplan, J. H. An essential role for the extracellular domain of the Na,K-ATPase β-subunit in cation occlusion. Biochemistry 32, 6737–6743 (1993)

    Article  CAS  Google Scholar 

  8. Garty, H. & Karlish, S. J. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68, 431–459 (2006)

    Article  CAS  Google Scholar 

  9. Therien, A. G. & Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279, C541–C566 (2000)

    Article  CAS  Google Scholar 

  10. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647–655 (2000)

    Article  CAS  ADS  Google Scholar 

  11. Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004)

    Article  CAS  ADS  Google Scholar 

  12. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Olesen, C., Sorensen, T. L., Nielsen, R. C., Moller, J. V. & Nissen, P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Vilsen, B., Andersen, J. P., Petersen, J. & Jørgensen, P. L. Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric αβ-units of Na,K-ATPase. J. Biol. Chem. 262, 10511–10517 (1987)

    CAS  PubMed  Google Scholar 

  15. Danko, S., Yamasaki, K., Daiho, T. & Suzuki, H. Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase: changes in catalytic and transport sites during phosphoenzyme hydrolysis. J. Biol. Chem. 279, 14991–14998 (2004)

    Article  CAS  Google Scholar 

  16. Vilsen, B. & Andersen, J. P. Mutation to the glutamate in the fourth membrane segment of Na+,K+- ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Biochemistry 37, 10961–10971 (1998)

    Article  CAS  Google Scholar 

  17. Einholm, A. P., Andersen, J. P. & Vilsen, B. Importance of Leu99 in transmembrane segment M1 of the Na+,K+-ATPase in the binding and occlusion of K+ . J. Biol. Chem. 282, 23854–23866 (2007)

    Article  CAS  Google Scholar 

  18. Vilsen, B. Mutant Glu781Ala of the rat kidney Na+,K+-ATPase displays low cation affinity and catalyzes ATP hydrolysis at a high rate in the absence of potassium ions. Biochemistry 34, 1455–1463 (1995)

    Article  CAS  Google Scholar 

  19. Kuntzweiler, T. A., Arguello, J. M. & Lingrel, J. B. Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase α subunit are cation coordinating residues. J. Biol. Chem. 271, 29682–29687 (1996)

    Article  CAS  Google Scholar 

  20. Blostein, R., Wilczynska, A., Karlish, S. J., Arguello, J. M. & Lingrel, J. B. Evidence that Ser775 in the α subunit of the Na,K-ATPase is a residue in the cation binding pocket. J. Biol. Chem. 272, 24987–24993 (1997)

    Article  CAS  Google Scholar 

  21. Pedersen, P. A., Nielsen, J. M., Rasmussen, J. H. & Jorgensen, P. L. Contribution to Tl+, K+, and Na+ binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in α-subunit of renal Na,K-ATPase. Biochemistry 37, 17818–17827 (1998)

    Article  CAS  Google Scholar 

  22. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature doi: 10.1038/nature06418. (this issue)

    Article  CAS  ADS  Google Scholar 

  23. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478 (1989)

    Article  CAS  ADS  Google Scholar 

  24. Andersen, J. P. & Vilsen, B. Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. J. Biol. Chem. 269, 15931–15936 (1994)

    CAS  PubMed  Google Scholar 

  25. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)

    Article  CAS  ADS  Google Scholar 

  26. Donnet, C., Arystarkhova, E. & Sweadner, K. J. Thermal denaturation of the Na,K-ATPase provides evidence for α-α oligomeric interaction and γ subunit association with the C-terminal domain. J. Biol. Chem. 276, 7357–7365 (2001)

    Article  CAS  Google Scholar 

  27. Colonna, T. E., Huynh, L. & Fambrough, D. M. Subunit interactions in the Na,K-ATPase explored with the yeast two-hybrid system. J. Biol. Chem. 272, 12366–12372 (1997)

    Article  CAS  Google Scholar 

  28. Rice, W. J., Young, H. S., Martin, D. W., Sachs, J. R. & Stokes, D. L. Structure of the Na+,K+-ATPase at 11-Å resolution: comparison with Ca2+-ATPase in E1 and E2 states. Biophys. J. 80, 2187–2197 (2001)

    Article  CAS  Google Scholar 

  29. Hebert, H., Purhonen, P., Vorum, H., Thomsen, K. & Maunsbach, A. B. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. J. Mol. Biol. 314, 478–494 (2001)

    Article  Google Scholar 

  30. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. & Walker, J. E. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae . Science 308, 654–659 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Teriete, P., Franzin, C. M., Choi, J. & Marassi, F. M. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46, 6774–6783 (2007)

    Article  CAS  Google Scholar 

  32. Li, C. et al. Structural and functional interactions sites between Na+,K+-ATPase and FXYD proteins. J. Biol. Chem. 279, 38895–38902 (2004)

    Article  CAS  Google Scholar 

  33. Meij, I. C. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase γ-subunit. Nature Genet. 26, 265–266 (2000)

    Article  CAS  Google Scholar 

  34. Einholm, A. P., Toustrup-Jensen, M., Andersen, J. P. & Vilsen, B. Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E2P conformation. Proc. Natl Acad. Sci. USA 102, 11254–11259 (2005)

    Article  CAS  ADS  Google Scholar 

  35. Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren, M. G. & Nissen, P. Crystal structure of a plasma membrane proton pump. doi: 10/1038/nature06417 Nature. (this issue)

  36. Håkansson, K. O. The crystallographic structure of Na,K-ATPase N-domain at 2.6 Å resolution. J. Mol. Biol. 332, 1175–1182 (2003)

    Article  Google Scholar 

  37. Hilge, M. et al. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nature Struct. Biol. 10, 468–474 (2003)

    Article  CAS  Google Scholar 

  38. Sweadner, K. J. & Feschenko, M. S. Predicted location and limited accessibility of protein kinase A phosphorylation site on Na-K-ATPase. Am. J. Physiol. Cell Physiol. 280, C1017–C1026 (2001)

    Article  CAS  Google Scholar 

  39. Vilsen, B., Ramlov, D. & Andersen, J. P. Functional consequences of mutations in the transmembrane core region for cation translocation and energy transduction in the Na+,K+-ATPase and the SR Ca2+-ATPase. Ann. NY Acad. Sci. 834, 297–309 (1997)

    Article  CAS  ADS  Google Scholar 

  40. Ogawa, H. & Toyoshima, C. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl Acad. Sci. USA 99, 15977–15982 (2002)

    Article  CAS  ADS  Google Scholar 

  41. Li, C., Capendeguy, O., Geering, K. & Horisberger, J. D. A third Na+-binding site in the sodium pump. Proc. Natl Acad. Sci. USA 102, 12706–12711 (2005)

    Article  CAS  ADS  Google Scholar 

  42. Imagawa, T., Yamamoto, T., Kaya, S., Sakaguchi, K. & Taniguchi, K. Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity. J. Biol. Chem. 280, 18736–18744 (2005)

    Article  CAS  Google Scholar 

  43. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    Article  CAS  ADS  Google Scholar 

  44. Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002)

    Article  CAS  ADS  Google Scholar 

  45. Crambert, G. et al. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J. Biol. Chem. 275, 1976–1986 (2000)

    Article  CAS  Google Scholar 

  46. Jørgensen, P. L. Purification and characterization of (Na+ + K+)-ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by SDS. Biochim. Biophys. Acta 356, 36–52 (1974)

    Article  Google Scholar 

  47. Rodacker, V., Toustrup-Jensen, M. & Vilsen, B. Mutations Phe785Leu and Thr618Met in Na+,K+-ATPase, associated with familial rapid-onset dystonia parkinsonism, interfere with Na+ interaction by distinct mechanisms. J. Biol. Chem. 281, 18539–18548 (2006)

    Article  CAS  Google Scholar 

  48. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  49. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  Google Scholar 

  50. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2006)

    Google Scholar 

  51. Cowtan, K. D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D 52, 43–48 (1996)

    Article  CAS  Google Scholar 

  52. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  53. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  54. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Pohl, C. Schulze-Briese, and T. Tomizaki for extensive assistance with synchrotron data collection and Anna Marie Nielsen, Jytte Jørgensen, Kirsten Lykke Pedersen, and Lene Jacobsen for technical assistance. We are thankful to Hanne Poulsen, Anja P. Einholm, and Laure Yatime for discussion, and to Dr. Otto Hansen, University of Aarhus, for the γ-subunit specific polyclonal antibody. This work was supported financially through the DANSYNC programme, the Centre for Structural Biology of the Danish Research Council for Natural Sciences, and a Hallas-Møller stipend from the Novo-Nordisk Foundation (to P.N.), as well as by research grants from the Lundbeck Foundation, the Novo Nordisk Foundation (Fabrikant Vilhelm Pedersen og Hustrus Legat), and the Danish Medical Research Council (to B.V.). B.P.P. is supported by a fellowship from the Aarhus Graduate School of Science.

Author Contributions J.P.M. performed crystallization experiments, data collection and processing, structure determination and refinement, and structural analysis. B.P.P. assisted in data collection, structure determination and analysis. T.L.S. identified initial crystallization conditions. M.S.T.J. produced mutant enzyme and characterized it functionally. J.P. performed occlusion experiments and prepared and characterized Na+,K+-ATPase samples as required for crystallization. P.N., B.V., and J.P.A. supervised the project and analysed the structure. The paper was written by J.P.M., P.N., B.V., and J.P.A., P.N. and B.V. have contributed equally and with equal resources to the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bente Vilsen or Poul Nissen.

Additional information

The Na+,K+-ATPase has the PDB code 3B8E.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S6 with Legends. (PDF 5267 kb)

Supplementary Movie

This file contains Supplementary Movie 1 entitled ‘Rotating model of pig renal Na+,K+-ATPase’ The movie shows the α1 β1 γ complex of the Na+,K+-ATPase from pig kidney. The α-subunit is in blue, β in wheat, γ in red, and the C-terminal switch of α in light red. The two Rb+ ions in the membrane are indicated by magenta spheres, and the MgF42- and Mg2+ bound at the cytoplasmic P domain are indicated by orange and grey spheres, respectively. (SWF 9309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morth, J., Pedersen, B., Toustrup-Jensen, M. et al. Crystal structure of the sodium–potassium pump. Nature 450, 1043–1049 (2007). https://doi.org/10.1038/nature06419

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06419

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing