Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using temperature to analyse temporal dynamics in the songbird motor pathway

Abstract

Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in HVC temperature affect song duration.
Figure 2: HVC cooling slows the song at all timescales.
Figure 3: Effects of RA temperature change on song timing.
Figure 4: Effects of RA temperature change on RA spiking activity.
Figure 5: Effect of unilateral HVC cooling on song timing.

Similar content being viewed by others

References

  1. Marder, E. & Bucher, D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316 (2007)

    Article  CAS  Google Scholar 

  2. Stent, G. S. et al. Neuronal generation of the leech swimming movement. Science 200, 1348–1357 (1978)

    Article  ADS  CAS  Google Scholar 

  3. Williams, H. Birdsong and singing behavior. Ann. NY Acad. Sci. 1016, 1–30 (2004)

    Article  ADS  Google Scholar 

  4. Konishi, M. Birdsong: from behavior to neuron. Annu. Rev. Neurosci. 8, 125–170 (1985)

    Article  CAS  Google Scholar 

  5. Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976)

    Article  CAS  Google Scholar 

  6. Nottebohm, F., Kelley, D. B. & Paton, J. A. Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol. 207, 344–357 (1982)

    Article  CAS  Google Scholar 

  7. Zann, R. A. The Zebra Finch: A Synthesis of Field and Laboratory Studies 196–246 (Oxford Univ. Press, 1996)

    Google Scholar 

  8. Glaze, C. M. & Troyer, T. W. Temporal structure in zebra finch song: implications for motor coding. J. Neurosci. 26, 991–1005 (2006)

    Article  CAS  Google Scholar 

  9. Cooper, B. G. & Goller, F. Physiological insights into the social-context-dependent changes in the rhythm of the song motor program. J. Neurophysiol. 95, 3798–3809 (2006)

    Article  Google Scholar 

  10. Sossinka, R. & Böhner, J. Song types in the zebra finch (Poephila guttata castanotis). Z. Tierpsychol. 53, 123–132 (1980)

    Article  Google Scholar 

  11. Vicario, D. S. Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus Robustus archistriatalis. J. Comp. Neurol. 309, 486–494 (1991)

    Article  CAS  Google Scholar 

  12. Wild, J. M. Descending projections of the songbird nucleus robustus archistriatalis. J. Comp. Neurol. 338, 225–241 (1993)

    Article  CAS  Google Scholar 

  13. Vu, E. T., Mazurek, M. E. & Kuo, Y. C. Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934 (1994)

    Article  CAS  Google Scholar 

  14. Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273, 1871–1875 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Solis, M. M. & Perkel, D. J. Rhythmic activity in a forebrain vocal control nucleus in vitro . J. Neurosci. 25, 2811–2822 (2005)

    Article  CAS  Google Scholar 

  16. Chi, Z. & Margoliash, D. Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron 32, 899–910 (2001)

    Article  CAS  Google Scholar 

  17. Laje, R. & Mindlin, G. B. Diversity within a birdsong. Phys. Rev. Lett. 89, 288102 (2002)

    Article  ADS  Google Scholar 

  18. Striedter, G. F. & Vu, E. T. Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches. J. Neurobiol. 34, 27–40 (1998)

    Article  CAS  Google Scholar 

  19. Ashmore, R. C., Renk, J. A. & Schmidt, M. F. Bottom-up activation of the vocal motor forebrain by the respiratory brainstem. J. Neurosci. 28, 2613–2623 (2008)

    Article  CAS  Google Scholar 

  20. Goller, F. & Cooper, B. G. Peripheral motor dynamics of song production in the zebra finch. Ann. NY Acad. Sci. 1016, 130–152 (2004)

    Article  ADS  Google Scholar 

  21. Ashmore, R. C., Wild, J. M. & Schmidt, M. F. Brainstem and forebrain contributions to the generation of learned motor behaviors for song. J. Neurosci. 25, 8543–8554 (2005)

    Article  CAS  Google Scholar 

  22. Thompson, S. M., Masukawa, L. M. & Prince, D. A. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro . J. Neurosci. 5, 817–824 (1985)

    Article  CAS  Google Scholar 

  23. Volgushev, M., Vidyasagar, T. R., Chistiakova, M. & Eysel, U. T. Synaptic transmission in the neocortex during reversible cooling. Neuroscience 98, 9–22 (2000)

    Article  CAS  Google Scholar 

  24. Volgushev, M., Vidyasagar, T. R., Chistiakova, M., Yousef, T. & Eysel, U. T. Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J. Physiol. (Lond.) 522, 59–76 (2000)

    Article  CAS  Google Scholar 

  25. Arbas, E. A. & Calabrese, R. L. Rate modification in the heartbeat central pattern generator of the medicinal leech. J. Comp. Physiol. A 155, 783–794 (1984)

    Article  Google Scholar 

  26. Katz, P. S., Sakurai, A., Clemens, S. & Davis, D. Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J. Neurophysiol. 92, 1904–1917 (2004)

    Article  Google Scholar 

  27. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Herrmann, K. & Arnold, A. P. The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J. Neurosci. 11, 2063–2074 (1991)

    Article  CAS  Google Scholar 

  29. Spiro, J. E., Dalva, M. B. & Mooney, R. Long-range inhibition within the zebra finch song nucleus RA can coordinate the firing of multiple projection neurons. J. Neurophysiol. 81, 3007–3020 (1999)

    Article  CAS  Google Scholar 

  30. Roberts, T. F., Klein, M. E., Kubke, M. F., Wild, J. M. & Mooney, R. Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song. J. Neurosci. 28, 3479–3489 (2008)

    Article  CAS  Google Scholar 

  31. Mooney, R. Synaptic basis for developmental plasticity in a birdsong nucleus. J. Neurosci. 12, 2464–2477 (1992)

    Article  CAS  Google Scholar 

  32. Janata, P. & Margoliash, D. Gradual emergence of song selectivity in sensorimotor structures of the male zebra finch song system. J. Neurosci. 19, 5108–5118 (1999)

    Article  CAS  Google Scholar 

  33. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird. J. Neurophysiol. 96, 794–812 (2006)

    Article  Google Scholar 

  34. Schmidt, M. F. Pattern of interhemispheric synchronization in HVc during singing correlates with key transitions in the song pattern. J. Neurophysiol. 90, 3931–3949 (2003)

    Article  Google Scholar 

  35. Schmidt, M. F., Ashmore, R. C. & Vu, E. T. Bilateral control and interhemispheric coordination in the avian song motor system. Ann. NY Acad. Sci. 1016, 171–186 (2004)

    Article  ADS  Google Scholar 

  36. Williams, H., Crane, L. A., Hale, T. K., Esposito, M. A. & Nottebohm, F. Right-side dominance for song control in the zebra finch. J. Neurobiol. 23, 1006–1020 (1992)

    Article  CAS  Google Scholar 

  37. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002)

    Article  ADS  CAS  Google Scholar 

  38. Fee, M. S., Kozhevnikov, A. A. & Hahnloser, R. H. Neural mechanisms of vocal sequence generation in the songbird. Ann. NY Acad. Sci. 1016, 153–170 (2004)

    Article  ADS  Google Scholar 

  39. James, W. Psychology: The Briefer Course 1–17 (Dover, 2001)

    Google Scholar 

  40. Li, M. & Greenside, H. Stable propagation of a burst through a one-dimensional homogeneous excitatory chain model of songbird nucleus HVC. Phys. Rev. E 74, 011918 (2006)

    Article  ADS  Google Scholar 

  41. Jin, D. Z., Ramazanoglu, F. M. & Seung, H. S. Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J. Comput. Neurosci. 23, 283–299 (2007)

    Article  MathSciNet  Google Scholar 

  42. Glaze, C. M. & Troyer, T. W. Behavioral measurements of a temporally precise motor code for birdsong. J. Neurosci. 27, 7631–7639 (2007)

    Article  CAS  Google Scholar 

  43. Abeles, M. Coriconics: Neural Circuits of the Cerebral Cortex 208–226 (Cambridge Univ. Press, 1991)

    Book  Google Scholar 

  44. Leonardo, A. & Fee, M. S. Ensemble coding of vocal control in birdsong. J. Neurosci. 25, 652–661 (2005)

    Article  CAS  Google Scholar 

  45. Cardin, J. A., Raksin, J. N. & Schmidt, M. F. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system. J. Neurophysiol. 93, 2157–2166 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Aronov, T. Gardner, J. Goldberg, L. Las, B. Ölveczky, S. Seung and M. Wilson for their comments on earlier versions of this manuscript. This work is supported by funding from the US National Institutes of Health to M.S.F. (MH067105) and to M.A.L. (DC009280) as well as funding from the Human Frontiers Science Project.

Author Contributions M.A.L. and M.S.F. both contributed to all aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michale S. Fee.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, a Supplementary Discussion with Results, a Supplementary Appendix and Supplementary Figures 1-11 with Legends (PDF 15127 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M., Fee, M. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 (2008). https://doi.org/10.1038/nature07448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07448

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing