Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

xnd-1 regulates the global recombination landscape in Caenorhabditis elegans

Abstract

Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots1,2,3 and significant variation in hotspot usage exists between and among individuals4. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization1,5,6,7,8,9. Chromosomes show different frequencies of nondisjunction (NDJ)10, reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: xnd-1 is needed for the normal recombination landscape in C. elegans.
Figure 2: xnd-1 is required for efficient DSB formation on the X chromosome.
Figure 3: XND-1 is an autosomal protein that regulates X chromosome crossing over.
Figure 4: Germline chromatin is altered in xnd-1 mutants.

Similar content being viewed by others

References

  1. Gerton, J. L. et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 97, 11383–11390 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buhler, C., Borde, V. & Lichten, M. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae . PLoS Biol. 5, e324 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Robine, N. et al. Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae . Mol. Cell. Biol 27, 1868–1880 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Mieczkowski, P. A., Dominska, M., Buck, M. J., Lieb, J. D. & Petes, T. D. Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae . DNA Repair (Amst.) 104, 3955–3960 (2007)

    CAS  Google Scholar 

  7. Buard, J., Barthes, P., Grey, C. & de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 28, 2616–2624 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borde, V. et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 28, 99–111 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hassold, T., Hall, H. & Hunt, P. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet. 16, R203–R208 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Barnes, T. M., Kohara, Y., Coulson, A. & Hekimi, S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans . Genetics 141, 159–179 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rockman, M. V. & Kruglyak, L. Recombinational landscape and population genomics of Caenorhabditis elegans . PLoS Genet. 5, e1000419 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans . Development 129, 479–492 (2002)

    CAS  PubMed  Google Scholar 

  14. Hodgkin, J., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans . Genetics 91, 67–94 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Petty, E. L., Collette, K. S., Cohen, A. J., Snyder, M. J. & Csankovszki, G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet. 5, e1000699 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smolikov, S., Schild-Prufert, K. & Colaiacovo, M. P. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis. PLoS Genet. 4, e1000088 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans . Science 296, 2235–2238 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Ceol, C. J. & Horvitz, H. R. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev. Cell 6, 563–576 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Zetka, M. C. & Rose, A. M. Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans . Genetics 141, 1339–1349 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Parvanov, E. D., Petkov, P. M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327, 835 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Myers, S., Freeman, C., Auton, A., Donnelly, P. & McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nature Genet. 40, 1124–1129 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–378 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan, A. & Meyer, B. J. Protocol 21: antibody staining of C . elegans gonads in Wormbookhttp://www.wormbook.org/chapters/www_intromethodscellbiology/intromethodscellbiology.html#d0e2311〉 (2006)

  31. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Colaiácovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003)

    Article  PubMed  Google Scholar 

  33. Phillips, C. M. et al. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123, 1051–1063 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsai, C. J. et al. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev. 22, 194–211 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim, J. G., Stine, R. R. & Yanowitz, J. L. Domain-specific regulation of recombination in Caenorhabditis elegans in response to temperature, age and sex. Genetics 180, 715–726 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, M. W., Hammarlund, M., Harrach, T., Hullett, S. O. & Jorgensen, E. M. Rapid single nucleotide polymorphism mapping in C. elegans. BMC . Genomics 6, 118 (2005)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Bembenek, A. Bortvin, G. Deshpande, M. Halpern, V. Jantsch, A. MacQueen and D. Mets for comments on the manuscript; the Koshland lab and Baltimore Area Worm Club for discussions; M. Siddiqi for microscopy support. We are indebted to the Caenorhabditis Genetics Center and the C. elegans Knockout Consortium for worm stocks and Y. Kohara for cDNAs. This work was supported by the Carnegie Institution of Washington, NIH K01AG031296, and MWRI start-up funds to J.L.Y. D.L.B. was supported by a Canada Research Chair and a grant from NSERC.

Author information

Authors and Affiliations

Authors

Contributions

C.R.W. performed RNAi screen, SNP analysis, FISH and immunofluorescence. L.K. and D.L.B. identified xnd-1 as a HIM mutant, created co-suppression lines, and determined hatching rates and embryonic lethality. J.L.Y. prepared samples for immunofluorescence, isolated protein for antibody production and performed confocal microscopy. C.R.W. and J.L.Y. designed experiments, analysed data, and wrote the paper.

Corresponding author

Correspondence to Judith L. Yanowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with legends Supplementary Tables 1-6, legends for Supplementary Movies 1-3 and additional references. (PDF 8507 kb)

Supplementary Movie 1

This movie shows a 3D reconstruction of confocal stocks of a wild type gonad revealing RAD-51 foci on the X chromosome indicating the formation of DSBs on the X - see Supplementary Information file for full legend. (MOV 5771 kb)

Supplementary Movie 2

This movie shows a 3D reconstruction of confocal stocks of a xnd-1 mutant gonad revealing the absence of RAD-51 foci on the X chromosome, revealing the lack of DSBs on a fraction of X chromosomes in the mutant - see Supplementary Information file for full legend. (MOV 4182 kb)

Supplementary Movie 3

This movie shows a 3D reconstruction of confocal stacks from wild type gonads showing the enrichment of XND-1 protein on autosomes - see Supplementary Information file for full legend. (MOV 7313 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C., Kuervers, L., Baillie, D. et al. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature 467, 839–843 (2010). https://doi.org/10.1038/nature09429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research