Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of YAP/TAZ in mechanotransduction

Abstract

Cells perceive their microenvironment not only through soluble signals but also through physical and mechanical cues, such as extracellular matrix (ECM) stiffness or confined adhesiveness. By mechanotransduction systems, cells translate these stimuli into biochemical signals controlling multiple aspects of cell behaviour, including growth, differentiation and cancer malignant progression, but how rigidity mechanosensing is ultimately linked to activity of nuclear transcription factors remains poorly understood. Here we report the identification of the Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1) as nuclear relays of mechanical signals exerted by ECM rigidity and cell shape. This regulation requires Rho GTPase activity and tension of the actomyosin cytoskeleton, but is independent of the Hippo/LATS cascade. Crucially, YAP/TAZ are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry; conversely, expression of activated YAP overrules physical constraints in dictating cell behaviour. These findings identify YAP/TAZ as sensors and mediators of mechanical cues instructed by the cellular microenvironment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YAP/TAZ are regulated by ECM stiffness and cell shape
Figure 2: YAP/TAZ activity requires Rho and tension of the actin cytoskeleton
Figure 3: ECM stiffness and cell spreading regulate YAP/TAZ independently of the Hippo pathway
Figure 4: YAP/TAZ are required mediators of the biological effects controlled by ECM elasticity and cell geometry

Similar content being viewed by others

References

  1. Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010)

    Article  CAS  Google Scholar 

  2. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  CAS  Google Scholar 

  3. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010)

    Article  CAS  Google Scholar 

  4. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006)

    Article  CAS  Google Scholar 

  5. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)

    Article  CAS  Google Scholar 

  6. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  CAS  Google Scholar 

  7. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  CAS  Google Scholar 

  9. Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009)

    Article  CAS  Google Scholar 

  10. Olson, E. N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Rev. Mol. Cell Biol. 11, 353–365 (2010)

    Article  CAS  Google Scholar 

  11. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007)

    Article  CAS  Google Scholar 

  12. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010)

    Article  CAS  Google Scholar 

  13. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003)

    Article  CAS  Google Scholar 

  14. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010)

    Article  CAS  Google Scholar 

  15. Oka, T., Mazack, V. & Sudol, M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J. Biol. Chem. 283, 27534–27546 (2008)

    Article  CAS  Google Scholar 

  16. Lei, Q. Y. et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426–2436 (2008)

    Article  CAS  Google Scholar 

  17. Chen, Z., Friedrich, G. A. & Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301 (1994)

    Article  CAS  Google Scholar 

  18. Makita, R. et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am. J. Physiol. Renal Physiol. 294, F542–F553 (2008)

    Article  CAS  Google Scholar 

  19. Morin-Kensicki, E. M. et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65 . Mol. Cell. Biol. 26, 77–87 (2006)

    Article  CAS  Google Scholar 

  20. Skouloudaki, K. et al. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc. Natl Acad. Sci. USA 106, 8579–8584 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Nienhaus, U., Aegerter-Wilmsen, T. & Aegerter, C. M. Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mech. Dev. 126, 942–949 (2009)

    Article  CAS  Google Scholar 

  22. Schwank, G. & Basler, K. Regulation of organ growth by morphogen gradients. Cold Spring Harb. Perspect. Biol. 2, a001669 (2010)

    Article  Google Scholar 

  23. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 10.16.1–10.16.16 (2010)

    Article  Google Scholar 

  25. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Mahoney, W. M., Jr, Hong, J. H., Yaffe, M. B. & Farrance, I. K. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem. J. 388, 217–225 (2005)

    Article  CAS  Google Scholar 

  27. Martello, G. et al. A MicroRNA targeting Dicer for metastasis control. Cell 141, 1195–1207 (2010)

    Article  CAS  Google Scholar 

  28. Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136, 123–135 (2009)

    Article  CAS  Google Scholar 

  29. Morsut, L. et al. Negative control of Smad activity by ectodermin/Tif1γ patterns the mammalian embryo. Development 137, 2571–2578 (2010)

    Article  CAS  Google Scholar 

  30. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002)

    Article  CAS  Google Scholar 

  31. Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R. & Sheetz, M. P. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163, 409–419 (2003)

    Article  CAS  Google Scholar 

  32. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008)

    Article  CAS  Google Scholar 

  33. Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009)

    Article  CAS  Google Scholar 

  34. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Mackay, A. et al. cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 22, 2680–2688 (2003)

    Article  CAS  Google Scholar 

  36. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008)

    Article  CAS  Google Scholar 

  37. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007)

    Article  CAS  Google Scholar 

  38. Ota, M. & Sasaki, H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–4069 (2008)

    Article  CAS  Google Scholar 

  39. Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362 (2009)

    Article  CAS  Google Scholar 

  40. DiMeo, T. A. et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 69, 5364–5373 (2009)

    Article  CAS  Google Scholar 

  41. Mazzone, M. et al. Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc. Natl Acad. Sci. USA 107, 5012–5017 (2010)

    Article  ADS  CAS  Google Scholar 

  42. Descot, A. et al. Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol. Cell 35, 291–304 (2009)

    Article  CAS  Google Scholar 

  43. Selvaraj, A. & Prywes, R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13 (2004)

    Article  Google Scholar 

  44. Park, B. K. et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nature Med. 13, 62–69 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Scita for advice and gift of reagents; X. Yang for 5SA-YAP1 plasmid; I. Farrance for 4×GTIIC-lux plasmid; H. Miyoshi for pCSII-EF-MCS vector; L. Naldini for pMD2-VSVG vector; R. Treisman for ΔN1+C mDIA, R26D and V159N Actin plasmids; G. Posern for SRF-lux reporter; mouse TAZ and psPAX2 were Addgene plasmid 19025 and 12260. This work was supported by: Telethon and Progetti di Eccellenza CARIPARO grants to N.E.; AIRC (Italian Association for Cancer Research) PI and AIRC Special Program Molecular Clinical Oncology “5 per mille”, University of Padua Strategic grant, IIT Excellence grant and Telethon to S.P.; AIRC PI and MIUR (Italian Minister of University) grants to S.D.

Author information

Authors and Affiliations

Authors

Contributions

S.D., L.M. and S.P. designed research; L.M., S.D., M.A., E.E. and F.Z. performed experiments; M.C., S.B. and M.F. performed bioinformatics analysis; N.E. and S.G. prepared hydrogels; J.LeD. prepared micropost arrays; S.D. and S.P. coordinated the project; S.D. and S.P. wrote the manuscript.

Corresponding authors

Correspondence to Sirio Dupont or Stefano Piccolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 and Supplementary Figures 1-33 with legends. (PDF 13818 kb)

Supplementary Tables

This file contains Supplementary Tables 4-6, which show the MAL/SRF and NF-kappaB signatures used in Supplementary Figure 2. (XLS 116 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, S., Morsut, L., Aragona, M. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). https://doi.org/10.1038/nature10137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10137

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing