Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of a bacterial oligosaccharyltransferase

Abstract

Asparagine-linked glycosylation is a post-translational modification of proteins containing the conserved sequence motif Asn-X-Ser/Thr. The attachment of oligosaccharides is implicated in diverse processes such as protein folding and quality control, organism development or host–pathogen interactions. The reaction is catalysed by oligosaccharyltransferase (OST), a membrane protein complex located in the endoplasmic reticulum. The central, catalytic enzyme of OST is the STT3 subunit, which has homologues in bacteria and archaea. Here we report the X-ray structure of a bacterial OST, the PglB protein of Campylobacter lari, in complex with an acceptor peptide. The structure defines the fold of STT3 proteins and provides insight into glycosylation sequon recognition and amide nitrogen activation, both of which are prerequisites for the formation of the N-glycosidic linkage. We also identified and validated catalytically important, acidic amino acid residues. Our results provide the molecular basis for understanding the mechanism of N-linked glycosylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity and structure of C. lari PglB.
Figure 2: Topology of transmembrane domain.
Figure 3: Sequon binding and recognition.
Figure 4: Catalytic site and amide nitrogen activation.
Figure 5: Proposed glycosylation mechanism of PglB.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors have been deposited with the Protein Data Bank under accession code 3RCE.

References

  1. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999)

    Article  CAS  Google Scholar 

  2. Zielinska, D. F., Gnad, F., Wisniewski, J. R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010)

    Article  CAS  Google Scholar 

  3. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)

    Article  CAS  Google Scholar 

  4. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)

    Article  CAS  Google Scholar 

  5. Varki, A. Biological roles of oligosaccharides—all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  CAS  Google Scholar 

  6. Kelleher, D. J. & Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006)

    Article  CAS  Google Scholar 

  7. Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A. & Wormald, M. R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004)

    Article  CAS  Google Scholar 

  8. Breton, C. & Imberty, A. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9, 563–571 (1999)

    Article  CAS  Google Scholar 

  9. Charnock, S. J. & Davies, G. J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999)

    Article  CAS  Google Scholar 

  10. Ünligil, U. M. & Rini, J. M. Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10, 510–517 (2000)

    Article  Google Scholar 

  11. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008)

    Article  CAS  Google Scholar 

  12. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Chen, W. & Helenius, A. Role of ribosome and translocon complex during folding of influenza hemagglutinin in the endoplasmic reticulum of living cells. Mol. Biol. Cell 11, 765–772 (2000)

    Article  CAS  Google Scholar 

  14. Silberstein, S. & Gilmore, R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 10, 849–858 (1996)

    Article  CAS  Google Scholar 

  15. Whitley, P., Nilsson, I. & von Heijne, G. A nascent secretory protein may traverse the ribosome endoplasmic reticulum translocase complex as an extended chain. J. Biol. Chem. 271, 6241–6244 (1996)

    Article  CAS  Google Scholar 

  16. Ruiz-Canada, C., Kelleher, D. J. & Gilmore, R. Cotranslational and Posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009)

    Article  CAS  Google Scholar 

  17. Zufferey, R. et al. Stt3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 14, 4949–4960 (1995)

    Article  CAS  Google Scholar 

  18. Wilson, C. M. & High, S. Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J. Cell Sci. 120, 648–657 (2007)

    Article  CAS  Google Scholar 

  19. Schulz, B. L. et al. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc. Natl Acad. Sci. USA 106, 11061–11066 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Mescher, M. F. & Strominger, J. L. Purification and characterization of a prokaryotic glycoprotein from cell-envelope of Halobacterium salinarium. J. Biol. Chem. 251, 2005–2014 (1976)

    CAS  PubMed  Google Scholar 

  21. Szymanski, C. M., Yao, R. J., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999)

    Article  CAS  Google Scholar 

  22. Izquierdo, L. et al. Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J. 28, 2650–2661 (2009)

    Article  CAS  Google Scholar 

  23. Nasab, F. P., Schulz, B. L., Gamarro, F., Parodi, A. J. & Aebi, M. All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 3758–3768 (2008)

    Article  CAS  Google Scholar 

  24. Szymanski, C. M. & Wren, B. W. Protein glycosylation in bacterial mucosal pathogens. Nature Rev. Microbiol. 3, 225–237 (2005)

    Article  CAS  Google Scholar 

  25. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Abu-Qarn, M. & Eichler, J. Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation. Mol. Microbiol. 61, 511–525 (2006)

    Article  CAS  Google Scholar 

  27. Li, L. et al. Overexpression and topology of bacterial oligosaccharyltransferase PglB. Biochem. Biophys. Res. Commun. 394, 1069–1074 (2010)

    Article  CAS  Google Scholar 

  28. Schwarz, F. et al. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 21, 45–54 (2011)

    Article  CAS  Google Scholar 

  29. Chen, M. M., Glover, K. J. & Imperiali, B. From peptide to protein: Comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46, 5579–5585 (2007)

    Article  CAS  Google Scholar 

  30. Igura, M. et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27, 234–243 (2008)

    Article  CAS  Google Scholar 

  31. Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. & Kohda, D. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J. Biol. Chem. 285, 4941–4950 (2010)

    Article  CAS  Google Scholar 

  32. Collaborative Computational Project, 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  33. Kowarik, M. et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314, 1148–1150 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Bause, E. & Legler, G. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem. J. 195, 639–644 (1981)

    Article  CAS  Google Scholar 

  35. Kowarik, M. et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006)

    Article  CAS  Google Scholar 

  36. Bause, E. Model studies on N-glycosylation of proteins. Biochem. Soc. Trans. 12, 514–517 (1984)

    Article  CAS  Google Scholar 

  37. Breuer, W., Klein, R. A., Hardt, B., Bartoschek, A. & Bause, E. Oligosaccharyltransferase is highly specific for the hydroxy amino acid in Asn-Xaa-Thr/Ser. FEBS Lett. 501, 106–110 (2001)

    Article  CAS  Google Scholar 

  38. Valliere-Douglass, J. F. et al. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J. Biol. Chem. 284, 32493–32506 (2009)

    Article  CAS  Google Scholar 

  39. Imperiali, B. & Rickert, K. W. Conformational implications of asparagine-linked glycosylation. Proc. Natl Acad. Sci. USA 92, 97–101 (1995)

    Article  ADS  CAS  Google Scholar 

  40. Sharma, C., Lehle, L. & Tanner, W. N-glycosylation of yeast proteins—characterization of the solubilized oligosaccharyl transferase. Eur. J. Biochem. 116, 101–108 (1981)

    Article  CAS  Google Scholar 

  41. Liu, J. & Mushegian, A. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12, 1418–1431 (2003)

    Article  CAS  Google Scholar 

  42. Maeda, Y. et al. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20, 250–261 (2001)

    Article  CAS  Google Scholar 

  43. Imperiali, B., Shannon, K. L. & Rickert, K. W. Role of peptide conformation in asparagine-linked glycosylation. J. Am. Chem. Soc. 114, 7942–7944 (1992)

    Article  CAS  Google Scholar 

  44. Wiberg, K. B. & Breneman, C. M. Resonance interactions in acyclic systems. 3. Formamide internal rotation revisited. Charge and energy redistribution along the C-N bond rotational pathway. J. Am. Chem. Soc. 114, 831–840 (1992)

    Article  CAS  Google Scholar 

  45. Cleland, W. W. & Kreevoy, M. M. Low-barrier hydrogen bonds and enzymatic catalysis. Science 264, 1887–1890 (1994)

    Article  ADS  CAS  Google Scholar 

  46. Li, H., Chavan, M., Schindelin, H., Lennarz, W. J. & Li, H. L. Structure of the oligosaccharyl transferase complex at 12 Å resolution. Structure 16, 432–440 (2008)

    Article  CAS  Google Scholar 

  47. Lizak, C., Fan, Y. Y., Weber, T. C. & Aebi, M. N-linked glycosylation of antibody fragments in Escherichia coli. Bioconjug. Chem. 22, 488–496 (2011)

    Article  CAS  Google Scholar 

  48. Lefebre, M. D. & Valvano, M. A. Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 68, 5956–5964 (2002)

    Article  CAS  Google Scholar 

  49. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  Google Scholar 

  50. Strong, M. et al. Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006)

    Article  ADS  CAS  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  52. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at the Swiss Light Source for assistance with data collection, S. Fleurkens and M. Bucher for technical assistance, and D. Arigoni for discussions. E. coli SCM6 was provided by C. Marolda and M. Valvano. C.L. was affiliated with the Life Science Zurich Graduate School. This research was supported by the NCCR Structural Biology Zurich (grant to K.P.L.) and Swiss National Science Foundation grants to M.A. (SNF 31003A-127098/1) and K.P.L. (SNF 31003A-131075/1).

Author information

Authors and Affiliations

Authors

Contributions

C.L., M.A. and K.P.L. designed the experiments. C.L., S.G. and S.N. performed the experiments; K.P.L. performed crystallographic calculations and model building; C.L., M.A. and K.P.L. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Kaspar P. Locher.

Ethics declarations

Competing interests

ETH Zurich has filed a patent application for the use of the PglB structure for biotechnological applications.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with legends, Supplementary Table 1 and additional references. (PDF 3936 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizak, C., Gerber, S., Numao, S. et al. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011). https://doi.org/10.1038/nature10151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing