Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of AMP-PNP-bound vitamin B12 transporter BtuCD–F

Abstract

The ATP-binding cassette (ABC) transporter BtuCD mediates the uptake of vitamin B12 across the inner membrane of Escherichia coli. Previous structures have shown the conformations of apo states, but the transport mechanism has remained unclear. Here we report the 3.5 Å crystal structure of the transporter-binding protein complex BtuCD–BtuF (BtuCD–F) trapped in an β-γ-imidoadenosine 5′-phosphate (AMP-PNP)-bound intermediate state. Although the ABC domains (BtuD subunits) form the expected closed sandwich dimer, the membrane-spanning BtuC subunits adopt a new conformation, with the central translocation pathway sealed by a previously unrecognized cytoplasmic gate. A fully enclosed cavity is thus formed approximately halfway across the membrane. It is large enough to accommodate a vitamin B12 molecule, and radioligand trapping showed that liposome-reconstituted BtuCD–F indeed contains bound B12 in the presence of AMP-PNP. In combination with engineered disulphide crosslinking and functional assays, our data suggest an unexpected peristaltic transport mechanism that is distinct from those observed in other ABC transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of BtuCD(N162C)–F and the structure of BtuCD(EQNC)–F.
Figure 2: Rearrangements of cytoplasmic gates and gating helices.
Figure 3: Structural features of cytoplasmic gate II.
Figure 4: B 12 translocation cavity.
Figure 5: Schematic of proposed B 12 transport mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors have been deposited at the Protein Data Bank under accession number 4FI3.

References

  1. Holland, I. B., Cole, S. P. C., Kuchler, K. & Higgins, C. F. ABC Proteins: From Bacteria to Man (Academic, 2003)

    Google Scholar 

  2. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008)

    Article  CAS  Google Scholar 

  3. Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009)

    Article  CAS  Google Scholar 

  4. Hollenstein, K., Dawson, R. J. & Locher, K. P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418 (2007)

    Article  CAS  Google Scholar 

  5. Erkens, G. B. et al. The structural basis of modularity in ECF-type ABC transporters. Nature Struct. Mol. Biol. 18, 755–760 (2011)

    Article  CAS  Google Scholar 

  6. Reynolds, P. R., Mottur, G. P. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli. Some observations on the roles of the gene products of BtuC and TonB. J. Biol. Chem. 255, 4313–4319 (1980)

    CAS  PubMed  Google Scholar 

  7. DeVeaux, L. C. & Kadner, R. J. Transport of vitamin B12 in Escherichia coli: cloning of the btuCD region. J. Bacteriol. 162, 888–896 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pattery, T., Hernalsteens, J. P. & De Greve, H. Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol. Microbiol. 33, 791–805 (1999)

    Article  CAS  Google Scholar 

  9. Janakiraman, A. & Slauch, J. M. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35, 1146–1155 (2000)

    Article  CAS  Google Scholar 

  10. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Hvorup, R. N. et al. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317, 1387–1390 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Korkhov, V. M., Mireku, S. A., Hvorup, R. N. & Locher, K. P. Asymmetric states of vitamin B12 transporter BtuCD are not discriminated by its cognate substrate binding protein BtuF. FEBS Lett. 586, 972–976 (2012)

    Article  CAS  Google Scholar 

  13. Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Oldham, M. L. & Chen, J. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Borths, E. L., Poolman, B., Hvorup, R. N., Locher, K. P. & Rees, D. C. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44, 16301–16309 (2005)

    Article  CAS  Google Scholar 

  18. Lewinson, O., Lee, A. T., Locher, K. P. & Rees, D. C. A distinct mechanism for the ABC transporter BtuCD–BtuF revealed by the dynamics of complex formation. Nature Struct. Mol. Biol. 17, 332–338 (2010)

    Article  CAS  Google Scholar 

  19. Klein, J. S. & Lewinson, O. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 3, 1098–1108 (2011)

    Article  CAS  Google Scholar 

  20. Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P. & Rees, D. C. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)

    Article  CAS  Google Scholar 

  22. Zaitseva, J., Jenewein, S., Jumpertz, T., Holland, I. B. & Schmitt, L. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J. 24, 1901–1910 (2005)

    Article  CAS  Google Scholar 

  23. Procko, E., Ferrin-O’Connell, I., Ng, S. L. & Gaudet, R. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol. Cell 24, 51–62 (2006)

    Article  CAS  Google Scholar 

  24. Dawson, R. J. & Locher, K. P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP–PNP. FEBS Lett. 581, 935–938 (2007)

    Article  CAS  Google Scholar 

  25. Newstead, S. et al. Insights into how nucleotide-binding domains power ABC transport. Structure 17, 1213–1222 (2009)

    Article  CAS  Google Scholar 

  26. Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000)

    Article  CAS  Google Scholar 

  27. Standfuss, J. et al. Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372, 1179–1188 (2007)

    Article  CAS  Google Scholar 

  28. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Dawson, R. J., Hollenstein, K. & Locher, K. P. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol. Microbiol. 65, 250–257 (2007)

    Article  CAS  Google Scholar 

  30. Goetz, B. A., Perozo, E. & Locher, K. P. Distinct gate conformations of the ABC transporter BtuCD revealed by electron spin resonance spectroscopy and chemical cross-linking. FEBS Lett. 583, 266–270 (2009)

    Article  CAS  Google Scholar 

  31. Joseph, B., Jeschke, G., Goetz, B. A., Locher, K. P. & Bordignon, E. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J. Biol. Chem. 286, 41008–41017 (2011)

    Article  CAS  Google Scholar 

  32. Sonnhammer, E. L., Eddy, S. R. & Durbin, R. Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405–420 (1997)

    Article  CAS  Google Scholar 

  33. Borths, E. L., Locher, K. P., Lee, A. T. & Rees, D. C. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl Acad. Sci. USA 99, 16642–16647 (2002)

    Article  ADS  CAS  Google Scholar 

  34. Karpowich, N. K., Huang, H. H., Smith, P. C. & Hunt, J. F. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J. Biol. Chem. 278, 8429–8434 (2003)

    Article  CAS  Google Scholar 

  35. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)

    Article  ADS  CAS  Google Scholar 

  36. Hollenstein, K., Frei, D. C. & Locher, K. P. Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216 (2007)

    Article  ADS  CAS  Google Scholar 

  37. Locher, K. P. Review. Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. Lond. B 364, 239–245 (2009)

    Article  CAS  Google Scholar 

  38. Patzlaff, J. S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003)

    Article  CAS  Google Scholar 

  39. Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1–4 (1988)

    Article  CAS  Google Scholar 

  40. Geertsma, E. R., Nik Mahmood, N. A., Schuurman-Wolters, G. K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nature Protocols 3, 256–266 (2008)

    Article  CAS  Google Scholar 

  41. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  42. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  43. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006)

    Article  ADS  CAS  Google Scholar 

  44. Dundas, J. et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116––W118 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at the Swiss Light Source for assistance with data collection. We are grateful to R. Schibli and M. Badertscher for access to the gamma counter. This research was supported by the NCCR Structural Biology Zurich and Swiss National Science Foundation (grant SNF 31003A-131075/1).

Author information

Authors and Affiliations

Authors

Contributions

V.M.K., S.A.M. and K.P.L. designed the experiments, V.M.K. and S.A.M. performed the experiments, V.M.K. and K.P.L. performed crystallographic calculations and all authors analysed the data. V.M.K. and K.P.L. wrote the manuscript.

Corresponding author

Correspondence to Kaspar P. Locher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 and Supplementary Tables 1-2. (PDF 5799 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkhov, V., Mireku, S. & Locher, K. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD–F. Nature 490, 367–372 (2012). https://doi.org/10.1038/nature11442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11442

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing