Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomic analysis of a key innovation in an experimental Escherichia coli population

Abstract

Evolutionary novelties have been important in the history of life, but their origins are usually difficult to examine in detail. We previously described the evolution of a novel trait, aerobic citrate utilization (Cit+), in an experimental population of Escherichia coli. Here we analyse genome sequences to investigate the history and genetic basis of this trait. At least three distinct clades coexisted for more than 10,000 generations before its emergence. The Cit+ trait originated in one clade by a tandem duplication that captured an aerobically expressed promoter for the expression of a previously silent citrate transporter. The clades varied in their propensity to evolve this novel trait, although genotypes able to do so existed in all three clades, implying that multiple potentiating mutations arose during the population’s history. Our findings illustrate the importance of promoter capture and altered gene regulation in mediating the exaptation events that often underlie evolutionary innovations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of Ara–3 population.
Figure 2: Tandem amplification in Cit + genomes.
Figure 3: Expression levels from native citT , native rnk and evolved rnk-citT regulatory regions during aerobic metabolism.
Figure 4: New rnk-citT module confers Cit + phenotype in potentiated background.
Figure 5: Refinement of Cit + phenotype by increased number of rnk-citT modules.
Figure 6: Evidence for epistatic interactions in potentiation of Cit + phenotype.
Figure 7: Mutations that produced Cit + phenotype in 14 replay experiments.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Mayr, E. In Evolution after Darwin (ed. Tax, S. ) Vol. 1, 349–380 (Univ. Chicago Press, 1960)

    Google Scholar 

  2. Pigliucci, M. What, if anything, is an evolutionary novelty? Philos. Sci. 75, 887–898 (2008)

    Article  Google Scholar 

  3. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977)

    Article  ADS  CAS  Google Scholar 

  4. Jacob, F. The Possible and the Actual. (Univ. Washington Press, 1982)

    Google Scholar 

  5. Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiol. 8, 4–15 (1982)

    Article  Google Scholar 

  6. Taylor, J. S. & Raes, J. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643 (2004)

    Article  CAS  Google Scholar 

  7. Patthy, L. Genome evolution and the evolution of exon-shuffling—a review. Gene 238, 103–114 (1999)

    Article  CAS  Google Scholar 

  8. True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002)

    Article  CAS  Google Scholar 

  9. Zhang, J. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298 (2003)

    Article  Google Scholar 

  10. Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno’s dilemma: evolution of new genes under continuous selection. Proc. Natl Acad. Sci. USA 104, 17004–17009 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. The evolutionary origin of complex features. Nature 423, 139–144 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003)

    Article  CAS  Google Scholar 

  13. Lenski, R. E. Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium Escherichia coli . Plant Breed. Rev. 24, 225–265 (2004)

    Google Scholar 

  14. Beaumont, H. J. E., Gallie, J., Kost, K., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Meyer, J. R., Dobias, D. T., Weitz, J. S., Barrick, J. E. & Lenski, R. E. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012)

    Article  ADS  CAS  Google Scholar 

  16. Bentley, D. R. Whole-genome resequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006)

    Article  CAS  Google Scholar 

  17. Hegreness, M. & Kishony, R. Analysis of genetic systems using experimental evolution and whole-genome sequencing. Genome Biol. 8, 201 (2007)

    Article  Google Scholar 

  18. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with E. coli . Nature 461, 1243–1247 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Barrick, J. E. & Lenski, R. E. Genome-wide mutational diversity in an evolving population of Escherichia coli . Cold Spring Harb. Symp. Quant. Biol. 74, 119–129 (2009)

    Article  CAS  Google Scholar 

  20. Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli . Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Koser, S. A. Correlation of citrate-utilization by members of the colon-aerogenes group with other differential characteristics and with habitat. J. Bacteriol. 9, 59–77 (1924)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lütgens, M. & Gottschalk, G. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. J. Gen. Microbiol. 119, 63–70 (1980)

    PubMed  Google Scholar 

  23. Scheutz, F. & Strockbine, N. A. In Bergey’s Manual of Systematic Bacteriology, Volume 2: The Proteobacteria (eds Garrity, G. M., Brenner, D. J., Kreig, N. R. & Staley, J. R. ) 607–624 (Springer, 2005)

    Google Scholar 

  24. Hall, B. G. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J. Bacteriol. 151, 269–273 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong, H. et al. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. Biol. 394, 644–652 (2009)

    Article  CAS  Google Scholar 

  26. Fogle, C. A., Nagle, J. L. & Desai, M. M. Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics 180, 2163–2173 (2008)

    Article  Google Scholar 

  27. Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli . Mol. Biol. Evol. 15, 789–797 (1998)

    Article  CAS  Google Scholar 

  28. Rozen, D. E., Schneider, D. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J. Mol. Evol. 61, 171–180 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Glickman, B. W. & Radman, M. Escherichia coli mutator mutants deficient in methyl-instructed DNA mismatch correction. Proc. Natl Acad. Sci. USA 77, 1063–1067 (1980)

    Article  ADS  CAS  Google Scholar 

  30. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli . Nature 387, 703–705 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Lara, F. J. S. & Stokes, J. L. Oxidation of citrate by Escherichia coli . J. Bacteriol. 63, 415–420 (1952)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pos, K. M., Dimroth, P. & Bott, M. The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J. Bacteriol. 180, 4160–4165 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, L. & Deutsher, M. P. The Escherichia coli rna gene encoding RNase I: sequence and unusual promoter structure. Gene 119, 101–106 (1992)

    Article  CAS  Google Scholar 

  34. Shankar, S., Schlictman, D. & Chakrabarty, A. M. Regulation of nucleoside diphosphate kinase and an alternative kinase in Escherichia coli: role of the sspA and rnk genes in nucleoside triphosphate formation. Mol. Microbiol. 17, 935–943 (1995)

    Article  CAS  Google Scholar 

  35. Usakin, L. A., Kogan, G. L., Kalmykova, A. I. & Gvozdev, V. A. An alien promoter capture as a primary step of the evolution of testes-expressed repeats in the Drosophila melanogaster genome. Mol. Biol. Evol. 22, 1555–1560 (2005)

    Article  CAS  Google Scholar 

  36. Adam, D., Dimitrijevic, N. & Schartl, M. Tumor suppression in Xiphophorus by an accidentally acquired promoter. Science 259, 816–819 (1993)

    Article  ADS  CAS  Google Scholar 

  37. Bock, R. & Timmis, J. N. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30, 556–566 (2008)

    Article  CAS  Google Scholar 

  38. Whoriskey, S. K., Nghiem, V., Leong, P., Masson, J. & Miller, J. H. Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Dev. 1, 227–237 (1987)

    Article  CAS  Google Scholar 

  39. Janausch, I. G., Zientz, E., Tran, Q. H., Kroger, A. & Unden, G. C4-dicarboxylate carriers and sensors in bacteria. Biochim. Biophys. Acta 1553, 39–56 (2002)

    Article  CAS  Google Scholar 

  40. Andersson, D. I., Slechta, E. S. & Roth, J. R. Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science 282, 1133–1135 (1998)

    Article  ADS  CAS  Google Scholar 

  41. Reams, A. B., Kofoid, E., Savageau, M. & Roth, J. R. Duplication frequency in a population of Salmonella enterica rapidly approaches steady state with or without recombination. Genetics 184, 1077–1094 (2010)

    Article  CAS  Google Scholar 

  42. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103–119 (1985)

    Article  CAS  Google Scholar 

  43. Gunsalus, R. P. & Park, S. J. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res. Microbiol. 145, 437–450 (1994)

    Article  CAS  Google Scholar 

  44. Nizam, S. A., Zhu, J., Ho, P. Y. & Shimizu, K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem. Eng. J. 44, 240–250 (2009)

    Article  CAS  Google Scholar 

  45. Charlier, D., Piette, J. & Glansdorff, N. IS3 can function as a mobile promoter. Nucleic Acids Res. 10, 5935–5948 (1982)

    Article  CAS  Google Scholar 

  46. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991)

    Article  Google Scholar 

  47. Barrick, J. E. & Knoester, D. B. breseq. http://barricklab.org/breseq (2010)

  48. Camin, J. H. & Sokal, R. R. A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  49. Bjarnason, J., Southward, C. M. & Surette, M. G. Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J. Bacteriol. 185, 4973–4982 (2003)

    Article  CAS  Google Scholar 

  50. Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli . Nature Methods 3, 623–628 (2006)

    Article  CAS  Google Scholar 

  51. Herring, C. D., Glasner, J. D. & Blattner, F. R. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli . Gene 311, 153–163 (2003)

    Article  CAS  Google Scholar 

  52. Christensen, W. B. Hydrogen sulfide production and citrate utilization in the differentiating of enteric pathogens and coliform bacteria. Res. Bull. Weld County Health Dept. Greeley Colo. 1, 3–16 (1949)

    Google Scholar 

Download references

Acknowledgements

We thank N. Hajela, M. Kauth and S. Sleight for assistance, J. Meyer and J. Plucain for discussion, and C. Turner for comments on the paper. Sequencing services were provided by the MSU Research Technology Support Facility. We acknowledge support from the US National Science Foundation (DEB-1019989 to R.E.L.) including the BEACON Center for the Study of Evolution in Action (DBI-0939454), the US National Institutes of Health (K99-GM087550 to J.E.B.), the Defense Advanced Research Projects Agency (HR0011-09-1-0055 to R.E.L.), a Rudolf Hugh Fellowship (to Z.D.B.), a DuVall Family Award (to Z.D.B.), a Ronald M. and Sharon Rogowski Fellowship (to Z.D.B.) and a Barnett Rosenberg Fellowship (to Z.D.B).

Author information

Authors and Affiliations

Authors

Contributions

J.E.B. and Z.D.B performed genome sequencing and analyses. J.E.B. performed phylogenetic analyses and developed code for sequence analyses. Z.D.B. performed growth curves, molecular experiments and sequenced specific genes. C.J.D. performed gene expression experiments. R.E.L. conceived and directs the long-term experiment. Z.D.B., J.E.B., C.J.D. and R.E.L. analysed data, wrote the paper and prepared figures.

Corresponding authors

Correspondence to Zachary D. Blount or Richard E. Lenski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

All genome data have been deposited in the NCBI Sequence Read Archive database (SRA026813). Other data have been deposited in the DRYAD database (http://dx.doi.org/10.5061/dryad.8q6n4). R.E.L. will make strains available to qualified recipients, subject to a material transfer agreement that can be found at http://www.technologies.msu.edu/inventors/mta-cda/mta/mta-forms.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, Supplementary Tables 1, 3-15 and legend for Supplementary Table 2 (see separate file for Supplementary Table 2). (PDF 971 kb)

Supplementary Table 2

This table shows the mutations found in 29 sequenced genomes from population Ara–3. When opened, this file generates a summary table showing all mutations in html format; separate tables that show mutations for each individual genome in html format; and machine-readable data files for each genome. (ZIP 381 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blount, Z., Barrick, J., Davidson, C. et al. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012). https://doi.org/10.1038/nature11514

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11514

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing