Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors

Abstract

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles1,2. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D3, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis3,4,5, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the Tle superfamily.
Figure 2: Tle GXSXG-type proteins are antibacterial phospholipase effectors delivered by the T6SS.
Figure 3: Tle5PA is an HXKXXXXD-type interspecies antibacterial phospholipase effector delivered by the H2-T6SS of P. aeruginosa.

Similar content being viewed by others

Accession codes

Data deposits

GenBank accession numbers for all Tle proteins identified in this study are found in Supplementary Figs 1–5.

References

  1. Aloulou, A., Ali, Y. B., Bezzine, S., Gargouri, Y. & Gelb, M. H. Phospholipases: an overview. Methods Mol. Biol. 861, 63–85 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Schmiel, D. H. & Miller, V. L. Bacterial phospholipases and pathogenesis. Microbes Infect. 1, 1103–1112 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Wilderman, P. J., Vasil, A. I., Johnson, Z. & Vasil, M. L. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol. Microbiol. 39, 291–304 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Lesic, B., Starkey, M., He, J., Hazan, R. & Rahme, L. G. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155, 2845–2855 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sana, T. G. et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J. Biol. Chem. 287, 27095–27105 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barret, M., Egan, F., Fargier, E., Morrissey, J. P. & O’Gara, F. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 157, 1726–1739 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. Silverman, J. M., Brunet, Y. R., Cascales, E. & Mougous, J. D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol. 66, 453–472 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russell, A. B. et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11, 538–549 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishikawa, T. et al. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect. Immun. 80, 575–584 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LeRoux, M. et al. Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc. Natl Acad. Sci. USA 109, 19804–19809 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stace, C. L. & Ktistakis, N. T. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 1761, 913–926 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Kim, H. S. et al. Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6, 174 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yildiz, F. H. & Schoolnik, G. K. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180, 773–784 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou, S. et al. Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep. 1, 656–664 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandler, J. R. et al. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol. 191, 5901–5909 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaitkevicius, K. et al. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc. Natl Acad. Sci. USA 103, 9280–9285 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valeru, S. P. et al. Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect. Immun. 77, 935–942 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson, K. E. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Horton, R. M. et al. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279 (1993)

    Article  CAS  PubMed  Google Scholar 

  27. Korotkov, K. V. & Hol, W. G. Crystal structure of the pilotin from the enterohemorrhagic Escherichia coli type II secretion system. J. Struct. Biol. http://dx.doi.org/10.1016/j.jsb.2013.02.013 (28 February 2013)

  28. Cardona, S. T. & Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, F., Schwarz, S. & Mougous, J. D. TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol. Microbiol. 72, 1111–1125 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schell, M. A. et al. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64, 1466–1485 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Donnenberg, M. S. & Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59, 4310–4317 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)

    Article  PubMed  CAS  Google Scholar 

  37. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2, 953–971 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Balsalobre, C. et al. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol. Microbiol. 59, 99–112 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Imperi, F. et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics 9, 1901–1915 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6, e1001068 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Termine, E. & Michel, G. P. Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int. Microbiol. 12, 7–12 (2009)

    CAS  PubMed  Google Scholar 

  42. von Tigerstrom, R. G. & Stelmaschuk, S. The use of Tween 20 in a sensitive turbidimetric assay of lipolytic enzymes. Can. J. Microbiol. 35, 511–514 (1989)

    Article  CAS  PubMed  Google Scholar 

  43. Vance, R. E., Rietsch, A. & Mekalanos, J. J. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect. Immun. 73, 1706–1713 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mougous, J. D. et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nature Struct. Mol. Biol. 11, 721–729 (2004)

    Article  CAS  Google Scholar 

  45. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Article  CAS  PubMed  Google Scholar 

  46. Brügger, B., Erben, G., Sandhoff, R., Wieland, F. T. & Lehmann, W. D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94, 2339–2344 (1997)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Devaiah, S. P. et al. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67, 1907–1924 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. Welti, R. et al. Profiling membrane lipids in plant stress response. J. Biol. Chem. 277, 31994–32002 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Kulasekara, B. E. Uhlin and members of the Mougous and Wai laboratories for discussions, J. Woodward for sharing chemistry expertise, the Manoil laboratory for sharing B. thailandensis transposon mutants, and the Parsek laboratory and K. Korotkov for sharing reagents. This work was supported by grants from the National Institutes of Health (NIH) (AI080609, AI057141 and AI105268), Cystic Fibrosis Foundation (CFR565-CR07), the National Science Foundation (PHY-084845 and MCB-1151043), the Swedish Research Council (2010-3073, 2007-8673 UCMR Linnaeus and 2006-7431 MIMS), and the Faculty of Medicine, Umeå University. A.B.R. was supported by a Graduate Research Fellowship from the National Science Foundation (DGE-0718124), M.L. was supported by the NIH Cellular and Molecular Training Grant (GM07270), P.A.W. received support from the University of Washington Royalty Research Fund and the Sloan Foundation, and J.D.M. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Contributions

A.B.R., M.L., P.A.W., S.N.W. and J.D.M. conceived and designed experiments. A.B.R., M.L., K.H., D.M.A., T.I. and J.D.M. conducted experiments. A.B.R. and J.D.M. wrote the paper.

Corresponding author

Correspondence to Joseph D. Mougous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15 and Supplementary Table 1. (PDF 1614 kb)

Tle1BT-sensitive strains exhibit increased PI uptake in competition with wild-type B. thailandensis

This video shows wild-type B. thailandensis co-cultured with a GFP-labeled Tle1BT-sensitive B. thailandensis strain (∆I2698-2703). Phase, PI, and GFP images were acquired at 5-min intervals (overlays depicted in movie sequence). The Tle1BT-sensitive B. thailandensis strain appears in the green channel and PI staining in the red channel. (MOV 13098 kb)

Tle1BT-sensitive strains do not exhibit increased PI uptake in competition with B. thailandensis lacking clpV1

This video shows B. thailandensis lacking clpV1 (∆I2958) co-cultured with a GFP-labeled Tle1BT-sensitive B. thailandensis strain (∆I2698-2703). Phase, PI, and GFP images were acquired at 5-min intervals (overlays depicted in movie sequence). The Tle1BT-sensitive B. thailandensis strain appears in the green channel and PI staining in the red channel. (MOV 11786 kb)

Tle1BT-sensitive strains do not exhibit increased PI uptake in competition with B. thailandensis lacking Tle1BT and its upstream homolog

This video shows B. thailandensis lacking Tle1BT and its upstream homolog (∆I2698 ∆I2701-2703) co-cultured with a GFP-labeled Tle1BT-sensitive B. thailandensis strain (∆I2698-2703). Phase, PI, and GFP images were acquired at 5-min intervals (overlays depicted in movie sequence). The Tle1BT-sensitive B. thailandensis strain appears in the green channel and PI staining in the red channel. (MOV 8763 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A., LeRoux, M., Hathazi, K. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496, 508–512 (2013). https://doi.org/10.1038/nature12074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology