Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms

Subjects

Abstract

Bacterial biofilms are surface-associated, multicellular, morphologically complex microbial communities1,2,3,4,5,6,7. Biofilm-forming bacteria such as the opportunistic pathogen Pseudomonas aeruginosa are phenotypically distinct from their free-swimming, planktonic counterparts7,8,9,10. Much work has focused on factors affecting surface adhesion, and it is known that P. aeruginosa secretes the Psl exopolysaccharide, which promotes surface attachment by acting as ‘molecular glue’11,12,13,14,15. However, how individual surface-attached bacteria self-organize into microcolonies, the first step in communal biofilm organization, is not well understood. Here we identify a new role for Psl in early biofilm development using a massively parallel cell-tracking algorithm to extract the motility history of every cell on a newly colonized surface16. By combining this technique with fluorescent Psl staining and computer simulations, we show that P. aeruginosa deposits a trail of Psl as it moves on a surface, which influences the surface motility of subsequent cells that encounter these trails and thus generates positive feedback. Both experiments and simulations indicate that the web of secreted Psl controls the distribution of surface visit frequencies, which can be approximated by a power law. This Pareto-type17 behaviour indicates that the bacterial community self-organizes in a manner analogous to a capitalist economic system18, a ‘rich-get-richer’ mechanism of Psl accumulation that results in a small number of ‘elite’ cells becoming extremely enriched in communally produced Psl. Using engineered strains with inducible Psl production, we show that local Psl concentrations determine post-division cell fates and that high local Psl concentrations ultimately allow elite cells to serve as the founding population for initial microcolony development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficiency of surface coverage by bacterial trajectories and correlation with Psl trails.
Figure 2: Visit frequency distribution and its effect on bacterial movement.
Figure 3: Local Psl levels determine post-division cell fates.

Similar content being viewed by others

References

  1. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)

    Article  ADS  CAS  Google Scholar 

  2. O’Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998)

    Article  Google Scholar 

  3. O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000)

    Article  Google Scholar 

  4. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002)

    Article  CAS  Google Scholar 

  5. Klausen, M., Aaes-Jørgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003)

    Article  CAS  Google Scholar 

  6. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Mann, E. E. & Wozniak, D. J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36, 893–916 (2012)

    Article  CAS  Google Scholar 

  8. Lyczak, J. B., Cannon, C. L. & Pier, G. B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2, 1051–1060 (2000)

    Article  CAS  Google Scholar 

  9. Tatterson, L. E., Poschet, J. F., Firoved, A., Skidmore, J. & Deretic, V. CFTR and pseudomonas infections in cystic fibrosis. Front. Biosci. 6, d890–897 (2001)

    Article  CAS  Google Scholar 

  10. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Friedman, L. & Kolter, R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186, 4457–4465 (2004)

    Article  CAS  Google Scholar 

  12. Ma, L. Y., Lu, H. P., Sprinkle, A., Parsek, M. R. & Wozniak, D. J. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J. Bacteriol. 189, 8353–8356 (2007)

    Article  CAS  Google Scholar 

  13. Byrd, M. S. et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 73, 622–638 (2009)

    Article  CAS  Google Scholar 

  14. Ma, L., Jackson, K. D., Landry, R. M., Parsek, M. R. & Wozniak, D. J. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 188, 8213–8221 (2006)

    Article  CAS  Google Scholar 

  15. Byrd, M. S., Pang, B., Mishra, M., Swords, W. E. & Wozniak, D. J. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-κB activation in A549 cells. mBio 1, e00140–10 (2010)

    Article  Google Scholar 

  16. Gibiansky, M. L. et al. Bacteria use type IV pili to walk upright and detach from surfaces. Science 330, 197 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  ADS  Google Scholar 

  18. Gabaix, X. Power laws in economics and finance. Annu. Rev. Econ. 1, 255–294 (2009)

    Article  Google Scholar 

  19. Eagon, R. G. Composition of an extracellular slime produced by Pseudomonas aeruginosa. Can. J. Microbiol. 8, 585–586 (1962)

    Article  CAS  Google Scholar 

  20. Sutherland, I. W. The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol. 9, 222–227 (2001)

    Article  CAS  Google Scholar 

  21. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002)

    Article  CAS  Google Scholar 

  22. Colvin, K. M. et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14, 1913–1928 (2012)

    Article  CAS  Google Scholar 

  23. Monroe, D. Looking for chinks in the armor of bacterial biofilms. PLoS Biol. 5, e307 (2007)

    Article  Google Scholar 

  24. Flemming, H. C., Neu, T. R. & Wozniak, D. J. The EPS matrix: the “house of biofilm cells”. J. Bacteriol. 189, 7945–7947 (2007)

    Article  CAS  Google Scholar 

  25. Newman, J. R. & Fuqua, C. Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197–203 (1999)

    Article  CAS  Google Scholar 

  26. Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Solomon, S. & Richmond, P. Power laws of wealth, market order volumes and market returns. Physica A 299, 188–197 (2001)

    Article  ADS  Google Scholar 

  28. Holloway, B. W. Genetic recombination in Pseudomonas aeruginosa. J. Gen. Microbiol. 13, 572–581 (1955)

    CAS  PubMed  Google Scholar 

  29. Heydorn, A. et al. Experimental reproducibility in flow-chamber biofilms. Microbiology 146, 2409–2415 (2000)

    Article  CAS  Google Scholar 

  30. Sternberg, C. & Tolker-Nielsen, T. Growing and analyzing biofilms in flow cells. Curr. Protocols Microbiol. 21, 1B.2.1–1B.2.17 (2006)

    Google Scholar 

  31. Lecuyer, S. et al. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys. J. 100, 341–350 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Ma, L. et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5, e1000354 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

K.Z., B.S.T., M.R.P. and G.C.L.W. are supported by the US National Institutes of Health (NIH 1RO1HL087920). K.Z. and G.C.L.W. also acknowledge support from the US National Science Foundation (NSF DMR1106106) and a UCLA Transdisciplinary Seed Grant. B.S.T., J.J.H. and M.R.P. also acknowledge support from the NIH (R01AI077628, R01AI081983, R56AI061396) and NSF (MCB0822405). B.S.T. is supported by the Cystic Fibrosis Foundation Postdoctoral Fellowship (TSENG11F0). J.J.H. was supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. B.B. and E.L. acknowledge support from the NSF under DMR-1006430 (E.L.) and DGE-0824162 (B.B.). The authors would like to thank J. Copic for discussions and R. J. Siehnel for technical assistance. We dedicate this paper to the memory of M. Shannon.

Author information

Authors and Affiliations

Authors

Contributions

G.C.L.W., M.R.P. and K.Z. conceived the project. K.Z., B.S.T., M.R.P. and G.C.L.W. designed studies. K.Z. and B.S.T. performed experimental measurements. K.Z. and G.C.L.W. performed image analysis. F.J. helped in performing image analysis. M.L.G. helped in collecting experimental data. B.S.T., J.J.H. and M.R.P. constructed strains. B.B. and E.L. designed the model and performed computer simulations. K.Z., B.S.T., B.B., E.L., M.R.P. and G.C.L.W. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Erik Luijten, Matthew R. Parsek or Gerard C. L. Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-16, Supplementary Methods, Supplementary Tables 1-3 and Supplementary References. (PDF 1308 kb)

Evolution of surface coverage by bacterial trajectories

The left panels show the bright field videos while the right panels show the corresponding evolution of surface coverage by bacterial trajectories (WT (top row) and ΔpslD (bottom row)). In the right panels, red and black regions indicate used and fresh surfaces, respectively. For clarity, cells that reside on fresh surfaces are colored yellow, whereas cells that reside on used surfaces are colored purple. (MOV 30225 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Tseng, B., Beckerman, B. et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497, 388–391 (2013). https://doi.org/10.1038/nature12155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology