Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanometre-scale thermometry in a living cell

Abstract

Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression2,3,4,5 and tumour metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level2,3,4,5. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen–vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz−1/2) in an ultrapure bulk diamond sample. Using nitrogen–vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nitrogen–vacancy-based nanoscale thermometry.
Figure 2: Sensitivity of single nitrogen–vacancy thermometer.
Figure 3: Submicrometre thermometry using nanodiamonds.
Figure 4: Nanoscale thermometry in cells.

Similar content being viewed by others

References

  1. Yue, Y. & Wang, X. Nanoscale thermal probing. Nano Rev. http://dx.doi.org/10.3402/nano.v3i0.11586 (2012)

  2. Lucchetta, E., Lee, J., Fu, L., Patel, N. & Ismagilov, R. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Kumar, S. V. & Wigge, P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147 (2010)

    Article  CAS  Google Scholar 

  4. Lauschke, V. M., Tsiairis, C. D., François, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2012)

    Article  CAS  ADS  Google Scholar 

  5. Kamei, Y. et al. Infrared laser-mediated gene induction in targeted single cells in vivo. Nature Methods 6, 79–81 (2009)

    Article  CAS  Google Scholar 

  6. Vreugdenburg, T., Willis, C., Mundy, L. & Hiller, J. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res. Treat. 137, 665–676 (2013)

    Article  Google Scholar 

  7. Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nature Rev. Cancer 12, 39–50 (2011)

    Article  Google Scholar 

  8. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004)

    Article  Google Scholar 

  9. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Article  CAS  ADS  Google Scholar 

  10. Kim, S. H. et al. Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip. J. Micromech. Microeng. 16, 526 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Yang, J., Yang, H. & Lin, L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5, 5067–5071 (2011)

    Article  CAS  Google Scholar 

  12. Vetrone, F. et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010)

    Article  CAS  Google Scholar 

  13. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nature Commun. 3, 705 (2012)

    Article  ADS  Google Scholar 

  14. Donner, J., Thompson, S., Kreuzer, M., Baffou, G. & Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012)

    Article  CAS  ADS  Google Scholar 

  15. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010)

    Article  CAS  ADS  Google Scholar 

  16. Acosta, V. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010)

    Article  CAS  ADS  Google Scholar 

  17. Toyli, D. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012)

    Google Scholar 

  18. Chen, X.-D. et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 99, 161903–161903 (2011)

    Article  ADS  Google Scholar 

  19. Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008)

    Article  CAS  ADS  Google Scholar 

  20. Jin, C., Li, Z., Williams, R., Lee, K. & Park, I. Localized temperature and chemical reaction control in nanoscale space by nanowire array. Nano Lett. 11, 4818–4825 (2011)

    Article  CAS  ADS  Google Scholar 

  21. Maze, J. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    Article  CAS  ADS  Google Scholar 

  22. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  CAS  ADS  Google Scholar 

  23. Hodges, J. et al. Time keeping with electron spin states in diamond. Phys. Rev. A 87, 032118 (2013)

    Article  ADS  Google Scholar 

  24. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009)

    Article  CAS  ADS  Google Scholar 

  25. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011)

    Article  CAS  ADS  Google Scholar 

  26. Maurer, P. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys. 6, 912–918 (2010)

    Article  CAS  ADS  Google Scholar 

  27. Xu, G. et al. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines. PLoS ONE 7, e49021 (2012)

    Article  CAS  ADS  Google Scholar 

  28. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005)

    Article  CAS  Google Scholar 

  29. Wee, T.-L. et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. J. Phys. Chem. A 111, 9379–9386 (2007)

    Article  CAS  Google Scholar 

  30. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Walsworth, V. Denic, C. Latta, L. Jiang, A. Gorshkov, P. Cappellaro, A. Sushkov and I. Lovchinsky for discussions and help with experiments. This work was supported by the NSF, the Center for Ultracold Atoms, the Defense Advanced Research Projects Agency (QUASAR programme), the Army Research Office (MURI programme), the Packard Foundation, NIH Pioneer Awards (5DP1OD003893-03), the NHGRI (1P50HG006193-01) and the Swiss National Science Foundation (PBSKP2_143918) (P.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

P.C.M., H.J.N., H.P. and M.D.L. developed the idea for the study. G.K., P.C.M. and N.Y.Y. designed and conducted the experiments and analysed the data. M.K., P.K.L. and H.P. prepared the biological samples. All authors participated in discussions and writing of the manuscript.

Corresponding authors

Correspondence to H. Park or M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-5 and Supplementary References. (PDF 259 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucsko, G., Maurer, P., Yao, N. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). https://doi.org/10.1038/nature12373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12373

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing