Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking the influence and dependence of people on biodiversity across scales

Subjects

Abstract

Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The influence and dependence of people on biodiversity.
Figure 2: The influence of anthropogenic drivers on ecosystems through effects on the richness and types of species.
Figure 3: Temporal and spatial insurance effects enhance and stabilize ecosystem productivity.
Figure 4: Complementary approaches for understanding the ecosystem consequences of human-driven biodiversity change.

Similar content being viewed by others

References

  1. Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).

    Article  Google Scholar 

  5. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). This Review connects research on biodiversity and ecosystem functioning with research on ecosystem services.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Chapin, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  8. Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    Article  PubMed  Google Scholar 

  9. O'Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).

    Article  Google Scholar 

  10. Díaz, S. et al. The IPBES Conceptual Framework — connecting nature and people. Curr. Opin. in Env. Sust. 14, 1–16 (2015).

    Article  Google Scholar 

  11. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015). This article quantifies past changes and projects future changes in local species richness in response to land-use changes using an unparalleled global database of biodiversity observations.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  ADS  Google Scholar 

  13. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052 (2015). This paper synthesizes the short-term and long-term impacts of experimental habitat loss on biodiversity and ecosystem functioning.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis (Princeton Univ. Press, 2010).

    Book  Google Scholar 

  19. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016). This article shows that productivity depends on plant diversity, especially across sites, in naturally assembled grasslands worldwide.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016). This paper describes how the loss of tree diversity will lead to the loss of productivity in forests worldwide and quantifies the potential economic costs.

    Article  PubMed  CAS  Google Scholar 

  22. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article  Google Scholar 

  23. Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Commun. 4, 1340 (2013). This article shows that a greater number of tree species is more effective at delivering multiple ecosystem services in the forests of Sweden.

    Article  ADS  CAS  Google Scholar 

  24. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Duffy, J. E., Lefcheck, J. S., Stuart-Smith, R. D., Navarrete, S. A. & Edgar, G. J. Biodiversity enhances reef fish biomass and resistance to climate change. Proc. Natl Acad. Sci. USA 113, 6230–6235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    Article  PubMed  Google Scholar 

  29. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).

    Article  PubMed  Google Scholar 

  31. Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  32. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999). This paper and ref. 54 provide the theoretical basis for temporal and spatial insurance effects, which are now being tested empirically.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  33. Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article  PubMed  Google Scholar 

  34. Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).

    Article  Google Scholar 

  35. Bateman, I. J. et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341, 45–50 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).

    Article  Google Scholar 

  38. Hill, S. L. L. et al. Reconciling biodiversity indicators to guide understanding and action. Conserv. Lett. 9, 405–412 (2016).

    Article  Google Scholar 

  39. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  42. Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    Article  PubMed  Google Scholar 

  43. Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).

    Article  PubMed  Google Scholar 

  44. Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

    Article  PubMed  Google Scholar 

  45. Wardle, D. A., Bardgett, R. D., Callaway, R. M. & van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011). This review examines worldwide evidence of the ecosystem effects of losses and gains of particular species or groups of species with a certain function.

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Bellingham, P. J. et al. Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. J. Ecol. 104, 1505–1517 (2016).

    Article  CAS  Google Scholar 

  47. Buckley, Y. M. & Catford, J. Does the biogeographic origin of species matter? Ecological effects of native and non-native species and the use of origin to guide management. J. Ecol. 104, 4–17 (2016).

    Article  Google Scholar 

  48. Wilsey, B. J., Daneshgar, P. P. & Polley, H. W. Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. Perspect. Plant Ecol. Evol. Syst. 13, 265–276 (2011).

    Article  Google Scholar 

  49. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006).

    Article  PubMed  Google Scholar 

  51. Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nature Commun. 7, 12643 (2016).

    Article  CAS  ADS  Google Scholar 

  52. Gonzalez, A., Mouquet, N. & Loreau, M. in Biodiversity, Ecosystem Functioning, and Human Wellbeing (eds Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C.) Ch. 10, 134–146 (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  53. Gonzalez, A. & Chaneton, E. J. Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J. Anim. Ecol. 71, 594–602 (2002).

    Article  Google Scholar 

  54. Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  55. Thompson, P. L. & Gonzalez, A. Ecosystem multifunctionality in metacommunities. Ecology 97, 2867–2879 (2016).

    Article  PubMed  Google Scholar 

  56. Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).

    Article  Google Scholar 

  57. Staddon, P., Lindo, Z., Crittenden, P. D., Gilbert, F. & Gonzalez, A. Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol. Lett. 13, 543–552 (2010).

    Article  PubMed  Google Scholar 

  58. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  62. de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).

    Article  PubMed  Google Scholar 

  63. Cowles, J. M., Wragg, P. D., Wright, A. J., Powers, J. S. & Tilman, D. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Glob. Change Biol. 22, 741–749 (2016).

    Article  ADS  Google Scholar 

  64. Reich, P. B. et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410, 809–812 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Phil. Trans. R. Soc. B 371, 20150277 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hooper, D. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  67. McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).

    Article  Google Scholar 

  68. Hobbie, S. E. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Hooper, D. U. & Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305 (1997).

    Article  CAS  Google Scholar 

  70. Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  71. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article  Google Scholar 

  72. Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).

    Article  ADS  Google Scholar 

  73. Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013). This article provides a conceptual basis and case studies for linking functional traits and phylogenetic diversity to ecosystem services.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  76. Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    Article  PubMed  Google Scholar 

  79. Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  80. Duffy, J. E., Richardson, J. P. & Canuel, E. A. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol. Lett. 6, 637–645 (2003).

    Article  Google Scholar 

  81. Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Commun. 6, 6936 (2015).

    Article  CAS  ADS  Google Scholar 

  82. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  83. Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  84. Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  85. Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).

    Article  CAS  Google Scholar 

  86. Keeler, B. L. et al. The social costs of nitrogen. Sci. Adv. 2, e1600219 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people's perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).

    Article  Google Scholar 

  88. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Article  PubMed  Google Scholar 

  89. Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  90. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  91. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  92. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  94. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article  Google Scholar 

  95. Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Phil. Trans. R. Soc. B 371, 20150269 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  98. Chan, K. M. A. et al. Opinion: why protect nature? Rethinking values and the environment. Proc. Natl Acad. Sci. USA 113, 1462–1465 (2016).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  99. IPBES. The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services: Summary for Policymakers (IPBES, 2016). This report evaluates scenarios and models to explore plausible future changes in biodiversity, and the societal consequences, that result from human activities, and provides a road map for the use of these models.

  100. Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.I. acknowledges support from the US National Science Foundation (award number 1234162). A.G. is supported by a Killam Research Fellowship and a Canada Research Chair. M.L. is grateful for funding from the Laboratoires d'Excellence programme (Project TULIP, grant ANR-10-LABX-41) and an Advanced Grant (BIOSTASES project, grant agreement number 666971), funded by the European Research Council under Horizon 2020, the European Union Framework Programme for Research and Innovation. S.D. acknowledges support from Fondo para la Investigación Científica y Tecnológica (FONCyT), Secretaría de Investigación, Ciencia y Técnica (SECyT) at Universidad Nacional de Córdoba and the National Scientific and Technical Research Council (CONICET) of Argentina. D.W. acknowledges support from the EU BiodivERsA Forecasting Future Invasions and their Impacts (FFII) programme and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forest Isbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks L. Gamfeldt, A. Kinzig and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com.reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isbell, F., Gonzalez, A., Loreau, M. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017). https://doi.org/10.1038/nature22899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22899

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene