Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specification of transplantable astroglial subtypes from human pluripotent stem cells

Abstract

Human pluripotent stem cells (hPSCs) have been differentiated efficiently to neuronal cell types. However, directed differentiation of hPSCs to astrocytes and astroglial subtypes remains elusive. In this study, hPSCs were directed to nearly uniform populations of immature astrocytes (>90% S100β+ and GFAP+) in large quantities. The immature human astrocytes exhibit similar gene expression patterns as primary astrocytes, display functional properties such as glutamate uptake and promotion of synaptogenesis, and become mature astrocytes by forming connections with blood vessels after transplantation into the mouse brain. Furthermore, hPSC-derived neuroepithelia, patterned to rostral-caudal and dorsal-ventral identities with the same morphogens used for neuronal subtype specification, generate immature astrocytes that express distinct homeodomain transcription factors and display phenotypic differences of different astroglial subtypes. These human astroglial progenitors and immature astrocytes will be useful for studying astrocytes in brain development and function, understanding the roles of astrocytes in disease processes and developing novel treatments for neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of astroglia from hPSCs.
Figure 2: Astroglial subtypes express region-specific proteins.
Figure 3: Functional characteristics of hPSC-derived immature astrocytes.
Figure 4: HPSC-derived astroglia retain their identity in vivo.
Figure 5: Hypothesis of astroglial subtype specification.

Similar content being viewed by others

References

  1. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kettenmann, H. & Verkhratsky, A. Neuroglia: the 150 years after. Trends Neurosci. 31, 653–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, S.C. Defining glial cells during CNS development. Nat. Rev. Neurosci. 2, 840–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rowitch, D.H. & Kriegstein, A.R. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, M.A., Weick, J.P., Pearce, R.A. & Zhang, S.C. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J. Neurosci. 27, 3069–3077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. & Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Oberheim, N.A. et al. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 28, 3264–3276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 27, 117–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Seifert, G., Schilling, K. & Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Lobsiger, C.S. & Cleveland, D.W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat. Neurosci. 10, 1355–1360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Emsley, J.G. & Macklis, J.D. Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol. 2, 175–186 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bachoo, R.M. et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl. Acad. Sci. USA 101, 8384–8389 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeh, T.H., Lee da, Y., Gianino, S.M. & Gutmann, D.H. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57, 1239–1249 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guatteo, E., Stanness, K.A. & Janigro, D. Hyperpolarization-activated ion currents in cultured rat cortical and spinal cord astrocytes. Glia 16, 196–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Blomstrand, F., Aberg, N.D., Eriksson, P.S., Hansson, E. & Ronnback, L. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92, 255–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Haas, B. et al. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb. Cortex 16, 237–246 (2006).

    Article  PubMed  Google Scholar 

  20. Muroyama, Y., Fujiwara, Y., Orkin, S.H. & Rowitch, D.H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sugimori, M. et al. Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134, 1617–1629 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q. & Anderson, D.J. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133, 510–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Leary, D.D., Chou, S.J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Niederreither, K. & Dolle, P. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishiyama, A., Yang, Z. & Butt, A. Astrocytes and NG2-glia: what's in a name? J. Anat. 207, 687–693 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. et al. CD44 expression identifies astrocyte-restricted precursor cells. Dev. Biol. 276, 31–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson, M., Hume, R., Strange, R. & Bell, J.E. Glial and neuronal differentiation in the human fetal brain 9–23 weeks of gestation. Neuropathol. Appl. Neurobiol. 16, 193–204 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Pal, U., Chaudhury, S. & Sarkar, P.K. Tubulin and glial fibrillary acidic protein gene expression in developing fetal human brain at midgestation. Neurochem. Res. 24, 637–641 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, B.Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA 107, 4335–4340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pankratz, M.T. et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511–1520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X.J. et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136, 4055–4063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, M., Schools, G.P. & Kimelberg, H.K. Development of GLAST+ astrocytes and NG2+ glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J. Neurophysiol. 95, 134–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Scemes, E. & Giaume, C. Astrocyte calcium waves: what they are and what they do. Glia 54, 716–725 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doengi, M. et al. GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc. Natl. Acad. Sci. USA 106, 17570–17575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Christopherson, K.S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guillaume, D.J., Johnson, M.A., Li, X.J. & Zhang, S.C. Human embryonic stem cell-derived neural precursors develop into neurons and integrate into the host brain. J. Neurosci. Res. 84, 1165–1176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oberheim, N.A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matyash, V. & Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res. Rev. 63, 2–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kessaris, N., Pringle, N. & Richardson, W.D. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Phil. Trans. R. Soc. Lond. B 363, 71–85 (2008).

    Article  CAS  Google Scholar 

  44. Hewett, J.A. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J. Neurochem. 110, 1717–1736 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Silver, D.J. & Steindler, D.A. Common astrocytic programs during brain development, injury and cancer. Trends Neurosci. 32, 303–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lepore, A.C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–1301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caldwell, M.A. et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol. 19, 475–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Abe, K., Abe, Y. & Saito, H. Evaluation of L-glutamate clearance capacity of cultured rat cortical astrocytes. Biol. Pharm. Bull. 23, 204–207 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Messing for critical reading of the manuscript. This study was supported by the ALS Association, National Institute of Neurological Disorders and Stroke (NS045926, NS057778, NS064578), National MS Society (NMSS TR-3761), NYSTEM (C024406), Bleser Family Foundation, Busta Family Foundation, Neuroscience Training Program (T32 GM007507) and partly by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (P30 HD03352).

Author information

Authors and Affiliations

Authors

Contributions

R.K. and S.-C.Z. designed the experiments and wrote the manuscript. R.K., J.P.W., Y.L. and Z.-J.Z. performed the experiments. R.K., J.P.W., Y.L., Z.-.J.Z. and S.-C.Z. analyzed the data.

Corresponding author

Correspondence to Su-Chun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Figures 1–4 (PDF 802 kb)

Supplementary Movie 1

Representative example of calcium wave propagation in FGF8-specified astroglia. (AVI 2201 kb)

Supplementary Movie 2

Z series of human astrocyte image in Fig. 4g stained for GFAP (green), human nuclei (red), and total nuclei (blue). (AVI 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krencik, R., Weick, J., Liu, Y. et al. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29, 528–534 (2011). https://doi.org/10.1038/nbt.1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1877

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research