Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes

Abstract

Specification of cell identity during development depends on exposure of cells to sequences of extrinsic cues delivered at precise times and concentrations. Identification of combinations of patterning molecules that control cell fate is essential for the effective use of human pluripotent stem cells (hPSCs) for basic and translational studies. Here we describe a scalable, automated approach to systematically test the combinatorial actions of small molecules for the targeted differentiation of hPSCs. Applied to the generation of neuronal subtypes, this analysis revealed an unappreciated role for canonical Wnt signaling in specifying motor neuron diversity from hPSCs and allowed us to define rapid (14 days), efficient procedures to generate spinal and cranial motor neurons as well as spinal interneurons and sensory neurons. Our systematic approach to improving hPSC-targeted differentiation should facilitate disease modeling studies and drug screening assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale examination of differentiation conditions reveals a concentration dependent Chir/RA cooperation to induce sMN progenitors.
Figure 2: Time-dependent combinatorial action of RA, Chir-99021 and SAG to efficiently specify MN progenitors with no increase of sMN generation.
Figure 3: γ-secretase inhibitors rapidly force the conversion of sMN progenitors to sMNs.
Figure 4: Rapid and efficient differentiation of functional sMNs from hPSCs.
Figure 5: Chir regulates key developmental pathways in a concentration-dependent manner to rapidly specify hindbrain cMNs.
Figure 6: Synchronous generation of neuronal subtypes for comparative studies of axon response to guidance cues.

Similar content being viewed by others

References

  1. Sandoe, J. & Eggan, K. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat. Neurosci. 16, 780–789 (2013).

    Article  CAS  Google Scholar 

  2. Merkle, F.T. & Eggan, K. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12, 656–668 (2013).

    Article  CAS  Google Scholar 

  3. Perrimon, N., Pitsouli, C. & Shilo, B.Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 4, a005975 (2012).

    Article  Google Scholar 

  4. Peljto, M. & Wichterle, H. Programming embryonic stem cells to neuronal subtypes. Curr. Opin. Neurobiol. 21, 43–51 (2011).

    Article  CAS  Google Scholar 

  5. Guthrie, S. Patterning and axon guidance of cranial motor neurons. Nat. Rev. Neurosci. 8, 859–871 (2007).

    Article  CAS  Google Scholar 

  6. Kanning, K.C., Kaplan, A. & Henderson, C.E. Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 33, 409–440 (2010).

    Article  CAS  Google Scholar 

  7. Nordström, U., Maier, E., Jessell, T.M. & Edlund, T. An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol. 4, e252 (2006).

    Article  Google Scholar 

  8. Amoroso, M.W. et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J. Neurosci. 33, 574–586 (2013).

    Article  CAS  Google Scholar 

  9. Chen, H. et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809 (2014).

    Article  CAS  Google Scholar 

  10. Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    Article  Google Scholar 

  11. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  12. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  Google Scholar 

  13. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports 1, 703–714 (2012).

    Article  CAS  Google Scholar 

  14. Mendjan, S. et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15, 310–325 (2014).

    Article  CAS  Google Scholar 

  15. Bone, H.K., Nelson, A.S., Goldring, C.E., Tosh, D. & Welham, M.J. A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J. Cell Sci. 124, 1992–2000 (2011).

    Article  CAS  Google Scholar 

  16. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

    Article  CAS  Google Scholar 

  17. Borghese, L. et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28, 955–964 (2010).

    Article  CAS  Google Scholar 

  18. Mazzoni, E.O. et al. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat. Neurosci. 16, 1219–1227 (2013).

    Article  CAS  Google Scholar 

  19. Lee, S.K. & Pfaff, S.L. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38, 731–745 (2003).

    Article  CAS  Google Scholar 

  20. Dasen, J.S., De Camilli, A., Wang, B., Tucker, P.W. & Jessell, T.M. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134, 304–316 (2008).

    Article  CAS  Google Scholar 

  21. Miles, G.B. et al. Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci. 24, 7848–7858 (2004).

    Article  CAS  Google Scholar 

  22. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS  PubMed  Google Scholar 

  23. Marklund, U. et al. Detailed expression analysis of regulatory genes in the early developing human neural tube. Stem Cells Dev. 23, 5–15 (2014).

    Article  CAS  Google Scholar 

  24. Song, M.R. et al. T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 133, 4945–4955 (2006).

    Article  CAS  Google Scholar 

  25. Sturgeon, K. et al. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 138, 65–74 (2011).

    Article  CAS  Google Scholar 

  26. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  Google Scholar 

  27. Dasen, J.S. & Jessell, T.M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 (2009).

    Article  CAS  Google Scholar 

  28. Mazzoni, E.O. et al. Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals. Nat. Neurosci. 16, 1191–1198 (2013).

    Article  CAS  Google Scholar 

  29. Skromne, I., Thorsen, D., Hale, M., Prince, V.E. & Ho, R.K. Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134, 2147–2158 (2007).

    Article  CAS  Google Scholar 

  30. Ribes, V. & Briscoe, J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb. Perspect. Biol. 1, a002014 (2009).

    Article  Google Scholar 

  31. Bonanomi, D. & Pfaff, S.L. Motor axon pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001735 (2010).

    Article  Google Scholar 

  32. Varela-Echavarría, A., Tucker, A., Puschel, A.W. & Guthrie, S. Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18, 193–207 (1997).

    Article  Google Scholar 

  33. Masuda, T. et al. Netrin-1 acts as a repulsive guidance cue for sensory axonal projections toward the spinal cord. J. Neurosci. 28, 10380–10385 (2008).

    Article  CAS  Google Scholar 

  34. Wilson, V., Olivera-Martinez, I. & Storey, K.G. Stem cells, signals and vertebrate body axis extension. Development 136, 1591–1604 (2009).

    Article  CAS  Google Scholar 

  35. Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

    Article  Google Scholar 

  36. Tzouanacou, E., Wegener, A., Wymeersch, F.J., Wilson, V. & Nicolas, J.F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    Article  CAS  Google Scholar 

  37. Bialecka, M. et al. Cdx2 contributes to the expansion of the early primordial germ cell population in the mouse. Dev. Biol. 371, 227–234 (2012).

    Article  CAS  Google Scholar 

  38. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  Google Scholar 

  39. Xi, J. et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells 30, 1655–1663 (2012).

    Article  CAS  Google Scholar 

  40. Wichterle, H. & Przedborski, S. What can pluripotent stem cells teach us about neurodegenerative diseases? Nat. Neurosci. 13, 800–804 (2010).

    Article  CAS  Google Scholar 

  41. Sathasivam, S. Brown-Vialetto-Van Laere syndrome. Orphanet J. Rare Dis. 3, 9 (2008).

    Article  Google Scholar 

  42. Nimchinsky, E.A. et al. Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J. Comp. Neurol. 416, 112–125 (2000).

    Article  CAS  Google Scholar 

  43. Marteyn, A. et al. Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy. Cell Stem Cell 8, 434–444 (2011).

    Article  CAS  Google Scholar 

  44. Di Giorgio, F.P., Boulting, G.L., Bobrowicz, S. & Eggan, K.C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  Google Scholar 

  45. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  46. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  47. Lefort, N. et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol. 26, 1364–1366 (2008).

    Article  CAS  Google Scholar 

  48. Nédelec, P.M., Shi, P., Amoroso, M.W., Kam, L.C. & Wichterle, H. Concentration dependent requirement for local protein synthesis in motor neuron subtype specific response to axon guidance cues. J. Neurosci. 32, 1496–1506 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

I-Stem is part of the Biotherapies Institute for Rare Diseases (BIRD) supported by the Association Française contre les Myopathies (AFM-Téléthon). This project was funded by AFM, INSERM and Laboratoire d'Excellence “Labex Revive” (Investissement d'Avenir; ANR-10-LABX-73). S.N. is currently supported by the “Labex Revive” and was previously supported by a fellowship from the Genopole. N.S.-M. was supported by the program INGESTEM (investissement d'avenir ANR-11-INBS-009-01). R.A.P. and V.C. are supported by ATIP-Avenir, Agence Nationale de la Recherche (ANR-12-BSV4-0021-01, ANR-13-JSV4-0002-01) and the Ville de Paris. We thank C. Varela and N. Lefort (I-STEM) for karyotyping the cell lines and L. Aubry (I-STEM) for providing the IMR90 hiPSC line. We thank H. Wichterle, F. Giudicelli, V. Ribes, E.O. Mazzoni and A. Rebsam for helpful discussion and critical review of the manuscript. We thank J.-F. Brunet for providing the Phox2b antibody, E.R. Lowry and H. Wichterle (Columbia University) for testing the sMN differentiation and for the Hb9GFP-Neomycin plasmid. We thank D. Furling (Institute of Myology) for providing human primary myoblasts.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., J.C., S.N., R.A.P. (electrophysiology) and N.S.-M. (real-time PCR) performed experiments. Y.M., J.C., C.M., R.A.P. and S.N. analyzed data. M.P., C.M., S.N. designed the project. S.N. and C.M. initiated the project, supervised and organized experiments. M.P. and V.C. provided resources. S.N. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Stéphane Nedelec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 2 (PDF 59363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maury, Y., Côme, J., Piskorowski, R. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol 33, 89–96 (2015). https://doi.org/10.1038/nbt.3049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing