Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surge in insect resistance to transgenic crops and prospects for sustainability

Abstract

Transgenic crops have revolutionized insect pest control, but their effectiveness has been reduced by evolution of resistance in pests. We analyzed global monitoring data reported during the first two decades of transgenic crops, with each case representing the responses of one pest species in one country to one insecticidal protein from Bacillus thuringiensis (Bt). The cases of pest resistance to Bt crystalline (Cry) proteins produced by transgenic crops increased from 3 in 2005 to 16 in 2016. By contrast, in 17 other cases there was no decrease in pest susceptibility to Bt crops, including the recently introduced transgenic corn that produces a Bt vegetative insecticidal protein (Vip). Recessive inheritance of pest resistance has favored sustained susceptibility, but even when inheritance is not recessive, abundant refuges of non-Bt host plants have substantially delayed resistance. These insights may inform resistance management strategies to increase the durability of current and future transgenic crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global status of pest resistance to Bt crops.
Figure 2: Increasingly rapid evolution of pest resistance to Bt crops.

Similar content being viewed by others

References

  1. Godfray, H.C.J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Sanahuja, G., Banakar, R., Twyman, R.M., Capell, T. & Christou, P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. James, C. Global status of commercialized of biotech/GM crops: 2016. ISAAA Briefs 52 (ISAAA, Ithaca, NY, 2016).

    Google Scholar 

  5. National Academies of Sciences, Engineering, and Medicine. Genetically Engineered Crops: Experiences and Prospects (National Academies Press, Washington, DC, 2016).

  6. Mendelsohn, M., Kough, J., Vaituzis, Z. & Matthews, K. Are Bt crops safe? Nat. Biotechnol. 21, 1003–1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Comas, C., Lumbierres, B., Pons, X. & Albajes, R. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res. 23, 135–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Nicolia, A., Manzo, A., Veronesi, F. & Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 34, 77–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Mahon, R.J., Downes, S.J. & James, B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS One 7, e39192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernardi, O. et al. Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Crop Prot. 76, 7–14 (2015).

    Article  CAS  Google Scholar 

  11. Chakroun, M., Banyuls, N., Bel, Y., Escriche, B. & Ferré, J. Bacterial vegetative insecticidal proteins from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev. 80, 329–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Downes, S., Walsh, T. & Tay, W.T. Bt resistance in Australian insect pest species. Curr. Opin. Insect Sci. 15, 78–83 (2016).

    Article  PubMed  Google Scholar 

  13. Wei, Y., Wu, S., Yang, Y. & Wu, Y. Baseline susceptibility of field populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa toxin and lack of cross-resistance between Vip3Aa and Cry toxins. Toxins (Basel) 9, 127 (2017).

    Article  CAS  Google Scholar 

  14. Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y. & Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Carpenter, J.E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28, 319–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Hutchison, W.D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tabashnik, B.E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28, 1304–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Edgerton, M.D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Kathage, J. & Qaim, M. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc. Natl. Acad. Sci. USA 109, 11652–11656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Heckel, D.G. Ecology. Insecticide resistance after Silent Spring. Science 337, 1612–1614 (2012).

    Article  PubMed  Google Scholar 

  23. Wu, Y. Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. Adv. Insect Physiol. 47, 297–342 (2014).

    Article  Google Scholar 

  24. Tabashnik, B.E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carriére, Y. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26, 199–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, F., Andow, D.A. & Buschman, L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol. Exp. Appl. 140, 1–16 (2011).

    Article  Google Scholar 

  27. Tabashnik, B.E., Mota-Sanchez, D., Whalon, M.E., Hollingworth, R.M. & Carrière, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. Entomol. 107, 496–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Andow, D.A. et al. Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109, 1–12 (2016).

    Article  PubMed  Google Scholar 

  29. Tabashnik, B.E. Tips for battling billion-dollar beetles. Science 354, 552–553 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Jakka, S.R.K., Shrestha, R.B. & Gassmann, A.J. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera). Sci. Rep. 6, 27860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zukoff, S.N. et al. Multiple assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1. J. Econ. Entomol. 109, 1387–1398 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Ali, M.I. & Luttrell, R.G. Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J. Econ. Entomol. 100, 921–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Tabashnik, B.E., Van Rensburg, J.B.J. & Carrière, Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 2011–2025 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Carrière, Y., Crickmore, N. & Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 33, 161–168 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Wei, J. et al. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci. Rep. 5, 7714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welch, K.L. et al. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 132, 149–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, L. et al. Resistance to Bacillus thuringiensis toxin Cry2Ab and survival on single-toxin and pyramided cotton in cotton bollworm from China. Evol. Appl. 10, 170–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Farias, J.R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).

    Article  Google Scholar 

  39. Monnerat, R. et al. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One 10, e0119544 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Omoto, C. et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 72, 1727–1736 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Siegfried, B.D. et al. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Pest Manag. Sci. 70, 725–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Yano, S.A.C. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Crespo, A.L.B. et al. On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag. Sci. 65, 1071–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Downes, S. et al. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II® cotton. Evol. Appl. 3, 574–584 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. US Environmental Protection Agency. Biopesticides registration action document. Bacillus thuringiensis plant-incorporated protectants. http://www.epa.gov/pesticides/biopesticides/pips/bt_brad.htm (2001).

  46. US Environmental Protection Agency. Pesticide News Story: EPA Approves Natural Refuge for Insect Resistance Management in Bollgard II Cotton. http://www.epa. gov/oppfead1/cb/csb_page/updates/2007/bollgard-cotton.htm (2007).

  47. Storer, N.P., Kubiszak, M.E., Ed King, J., Thompson, G.D. & Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J. Invertebr. Pathol. 110, 294–300 (2012).

    Article  PubMed  Google Scholar 

  48. Tabashnik, B.E. & Gould, F. Delaying corn rootworm resistance to Bt corn. J. Econ. Entomol. 105, 767–776 (2012).

    Article  PubMed  Google Scholar 

  49. Van den Berg, J., Hilbeck, A. & Bøhn, T. Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. Crop Prot. 54, 154–160 (2013).

    Article  Google Scholar 

  50. Mohan, K.S., Ravi, K.C., Suresh, P.J., Sumerford, D. & Head, G.P. Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard(®) hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag. Sci. 72, 738–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Argentinian Association of Seed Companies. Preguntas y Respuestas Sobre Cultivos Bt y Manejo de Resistencia de Insectos. First edition. http://fundacion-antama.org/preguntas-y-respuestas-sobre-cultivos-bt-y-manejo-de-resistencia-a-insectos/ (2016).

  52. Horikoshi, R.J. et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci. Rep. 6, 34864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, F., Kerns, D.L., Head, G., Brown, S. & Huang, F. Susceptibility of Cry1F-maize resistant, heterozygous, and susceptible Spodoptera frugiperda to Bt proteins used in the transgenic cotton. Crop Prot. 98, 128–135 (2017).

    Article  CAS  Google Scholar 

  54. Barkthade, U.P. & Thakare, A.S. Protease mediated resistance mechanism to Cry1C and Vip3A in Spodoptera litura. Egypt. Acad. J. Biol. Sci. 3, 43–50 (2010

    Google Scholar 

  55. Bernardi, O. et al. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Manag. Sci. 72, 1794–1802 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Pickett, B.R., Gulzar, A., Ferré, J. & Wright, D.J. Bacillus thuringiensis Vip3A toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 83, e03506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chakroun, M. et al. Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Sci. Rep. 6, 24311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson, R.E., Marcus, M.A., Gould, F., Bradley, J.R. Jr. & Van Duyn, J.W. Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein Vip3Aa. J. Econ. Entomol. 100, 180–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. An, J. et al. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J. Econ. Entomol. 103, 2169–2173 (2010).

    Article  PubMed  Google Scholar 

  60. Huang, F. et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9, e112958 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. US Environmental Protection Agency. Bacillus thuringiensis modified Cry1Ab (SYN-IR67B–1) and Vip3Aa19 (SYN-IR102–7) insecticidal proteins and the genetic material necessary for their production in COT102 X COT67B cotton. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006529_12-Aug-08.pdf (2008).

  62. US Environmental Protection Agency. Bacillus thuringiensis Vip3Aa20 insecticidal protein and the genetic material necessary for its production (via elements of vector pNOV1300) in event MIR162 maize. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006599_3-Apr-09.pdf (2009).

  63. Burkness, E.C., Dively, G., Patton, T., Morey, A.C. & Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops 1, 337–343 (2010).

    Article  PubMed  Google Scholar 

  64. Carrière, Y., Fabrick, J.A. & Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 34, 291–302 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Difonzo, C. Handy Bt trait table for U.S. corn production. Updated 15 March, 2017. http://msue.anr.msu.edu/news/handy_bt_trait_table (2017).

  66. Roush, R.T. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci. 51, 328–334 (1997).

    Article  CAS  Google Scholar 

  67. Kim, Y.H., Soumaila Issa, M., Cooper, A.M.W. & Zhu, K.Y. RNA interference: Applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Head, G.P. et al. Evaluation of SmartStax and SmartStaxPRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag. Sci. 73, 1883–1899 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Ni, M. et al. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 15, 1204–1213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bolognesi, R. et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7, e47534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bachman, P.M. et al. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res. 22, 1207–1222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moar, W. et al. Cry3Bb1-resistant western corn rootworm, Diabrotica virgifera virgifera (LeConte) does not exhibit cross-resistance to DvSnf7 dsRNA. PLoS One 12, e0169175 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bellés, X., Martín, D. & Piulachs, M.D. The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu. Rev. Entomol. 50, 181–199 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Jin, L. et al. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat. Biotechnol. 33, 169–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kranthi, K.R. Pink bollworm strikes Bt-cotton. Cotton Statistics & News. http://www.cicr.org.in/pdf/Kranthi_art/Pinkbollworm.pdf (2015).

    Google Scholar 

  76. Tabashnik, B.E. et al. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab. PLoS One 8, e80496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. US Environmental Protection Agency. Framework to delay corn rootworm resistance. https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/framework-delay-corn-rootworm-resistance#q1 (2016).

  78. Shukla, J.N. et al. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656–669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos. Trans. R. Soc. Lond., B 353, 1777–1786 (1998).

    Article  CAS  Google Scholar 

  80. Alyokhin, A. Scant evidence supports EPA's pyramided Bt corn refuge size of 5%. Nat. Biotechnol. 29, 577–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Tabashnik, B.E. et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat. Biotechnol. 29, 1128–1131 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Badran, A.H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schellenberger, U. et al. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354, 634–637 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Sampson, K. et al. Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western Corn Rootworm, Diabrotica virgifera virgifera. J. Invertebr. Pathol. 142, 34–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Bates, S.L., Zhao, J.Z., Roush, R.T. & Shelton, A.M. Insect resistance management in GM crops: past, present and future. Nat. Biotechnol. 23, 57–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S. & Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6, e22629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Van Rensburg, J.B.J. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).

    Article  Google Scholar 

  88. Van Rensburg, J.B.J. Evaluation of Bt-transgenic maize for resistance to the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) in South Africa. S. Afr. Tydskr. Plant Ground 16, 38–43 (1999).

    Google Scholar 

  89. Blanco, C.A. et al. Current situation of pests targeted by Bt crops in Latin America. Curr. Opin. Insect Sci. 15, 131–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Grimi, D.A., Ocampo, F., Martinelli, S. & Head, G.P. Detection and characterization of Diatraea saccharalis resistant to Cry1A.105 protein in a population of northeast San Luis province in Argentina. Congreso Argentino de Entomología; Posadas, Misiones, Argentina (2015).

  91. Murúa, M.G. et al. Situation and perspectives of insect resistance management (IRM) in Bt crops in Argentina. XXV International Congress of Entomology, Orlando, Florida (2016).

  92. Gassmann, A.J. et al. Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae): Root injury in the field and larval survival in plant-based bioassays. J. Econ. Entomol. 109, 1872–1880 (2016).

    Article  PubMed  Google Scholar 

  93. Ludwick, D.C. et al. Minnesota field population of western corn rootworm (Coleoptera: Chrysomelidae) shows incomplete resistance to Cry34Ab1/Cry35Ab1 and Cry3Bb1. J. Appl. Entomol. 141, 28–40 (2017).

    Article  CAS  Google Scholar 

  94. Gassmann, A.J. et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc. Natl. Acad. Sci. USA 111, 5141–5146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dively, G.P., Venugopal, P.D. & Finkenbinder, C. Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS One 11, e0169115 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Storer, N.P., Van Duyn, J.W. & Kennedy, G.G. Life history traits of Helicoverpa zea (Lepidoptera: Noctuidae) on non-Bt and Bt transgenic corn hybrids in eastern North Carolina. J. Econ. Entomol. 94, 1268–1279 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Luttrell, R.G. et al. in Proceedings of the 2004 Beltwide Cotton Conferences, San Antonio, Texas, January 5–9, 2004 (ed. Richter, D.A.) 1373–1383 (National Cotton Council of America, Memphis, TN; 2004).

    Google Scholar 

  98. Ali, M.I., Luttrell, R.G. & Young, S.Y. III Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J. Econ. Entomol. 99, 164–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Unglesbee, E. Worm woes. Progressive Farmer Winter 2017. http://dtnpf-digital.com/article/Worm+Woes/2664522/368510/article.html.

  100. Dhurua, S. & Gujar, G.T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Fabrick, J.A. et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India. PLoS One 9, e97900 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Nair, R., Kamath, S.P., Mohan, K.S., Head, G. & Sumerford, D.V. Inheritance of field-relevant resistance to the Bacillus thuringiensis protein Cry1Ac in Pectinophora gossypiella (Lepidoptera: Gelechiidae) collected from India. Pest Manag. Sci. 72, 558–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Ostrem, J.S. et al. Monitoring susceptibility of western bean cutworm (Lepidoptera: Noctuidae) field populations to Bacillus thuringiensis Cry1F protein. J. Econ. Entomol. 109, 847–853 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. DiFonzo, C. et al. An open letter to the Seed Industry regarding the efficacy of Cry1F against western bean cutworm. Cornell Field Crop News, October 2016. http://blogs.cornell.edu/ccefieldcropnews/2016/10/04/an-open-letter-to-the-seed-industry-regarding-the-efficacy-of-cry1f-bt-against-western-bean-cutworm-october-2016/.

  105. Peterson, J. et al. Begin scouting for western bean cutworm eggs in corn. Cropwatch. http://cropwatch.unl.edu/2016/begin-scouting-western-bean-cutworm-eggs-corn (July 8, 2016).

    Google Scholar 

  106. Eichenseer, H., Strohbehn, R. & Burks, J. Frequency and severity of western bean cutworm (Lepidoptera: Noctuidae) ear damage in transgenic corn hybrids expressing different Bacillus thuringiensis Cry toxins. J. Econ. Entomol. 101, 555–563 (2008).

    Article  PubMed  Google Scholar 

  107. Farias, J.R. et al. Dominance of Cry1F resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on TC1507 Bt maize in Brazil. Pest Manag. Sci. 72, 974–979 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Storer, N.P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).

    Article  PubMed  Google Scholar 

  109. Bernardi, O. et al. Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Huang, F. et al. Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of southwestern corn borer (Lepidoptera: Crambidae). Entomol. Exp. Appl. 122, 53–58 (2007).

    Article  Google Scholar 

  111. Downes, S. 2015–16 End of Season Resistance Monitoring Report. http://www.cottoninfo.com.au/publications/end-season-resistance-monitoring-conventional-insecticide-testing-report.

  112. Bird, L.J. & Akhurst, R.J. Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. J. Econ. Entomol. 97, 1699–1709 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Bird, L.J. & Akhurst, R.J. Fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on transgenic cotton with reduced levels of Cry1Ac. J. Econ. Entomol. 98, 1311–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Walsh, T.K. et al. Dual Cry2Ab and Vip3A resistant strains of Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae); testing linkage between loci and monitoring of allele frequencies. J. Econ. Entomol. 107, 1610–1617 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Blanco, C.A. et al. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 102, 381–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Gould, F. et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA 94, 3519–3523 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Adamczyk, J.J. Jr., Adams, L.C. & Hardee, D.D. Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J. Econ. Entomol. 94, 1589–1593 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. US Environmental Protection Agency. Bacillus thuringiensis Cry2Ab2 protein and its genetic material necessary for its production in cotton. Amended. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006487_4-Mar-03.pdf (2003).

  119. Sivasupramaniam, S. et al. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. J. Econ. Entomol. 101, 546–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Farinós, G.P., de la Poza, M., Hernández-Crespo, P.F., Ortego, F. & Castañera, P. Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol. Exp. Appl. 110, 23–30 (2004).

    Article  Google Scholar 

  121. European Food Safety Authority (EFSA) Panel on Genetically Modified Organisms. Scientific opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON 810 in 2013. EFSA J. 13, 4039 (2015).

  122. Siegfried, B.D. & Hellmich, R.L. Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food 3, 184–193 (2012).

    Article  PubMed  Google Scholar 

  123. Pereira, E.J.G., Storer, N.P. & Siegfried, B.D. Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull. Entomol. Res. 98, 621–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Wan, P. et al. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm. Proc. Natl. Acad. Sci. USA 114, 5413–5418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tabashnik, B.E. et al. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 106, 11889–11894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fabrick, J.A. et al. Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton. Sci. Rep. 5, 16554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Castañera, P., Farinós, G.P., Ortego, F. & Andow, D.A. Sixteen years of Bt maize in the EU hotspot: Why has resistance not evolved? PLoS One 11, e0154200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Huang, F. et al. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae). GM Crops Food 3, 245–254 (2012).

    Article  PubMed  Google Scholar 

  129. Ghimire, M.N., Huang, F., Leonard, R., Head, G.P. & Yang, Y. Susceptibility of Cry1Ab- susceptible and -resistant sugarcane borer to transgenic corn plants containing single or pyramided Bacillus thuringiensis genes. Crop Prot. 30, 74–81 (2011).

    Article  CAS  Google Scholar 

  130. Alcantara, E., Estrada, A., Alpuerto, V. & Head, G. Monitoring Cry1Ab susceptibility in Asian corn borer (Lepidoptera: Crambidae) on Bt corn in the Philippines. Crop Prot. 30, 554–559 (2011).

    Article  CAS  Google Scholar 

  131. Zhang, T. et al. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins (Basel) 6, 2694–2707 (2014).

    Article  CAS  Google Scholar 

  132. Liu, Y.-B. & Tabashnik, B.E. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc. R. Soc. Lond. B 264, 605–610 (1997).

    Article  Google Scholar 

  133. Carrière, Y. et al. Sources, sinks, and zone of influence of refuges for managing insect resistance to Bt crops. Ecol. Appl. 14, 1615–1623 (2004).

    Article  Google Scholar 

  134. Liu, Y. & Tabashnik, B.E. Inheritance of resistance to Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 63, 2218–2223 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. US Environmental Protection Agency. Final Report of the Subpanel on Bacillus thuringiensis (Bt) Plant-Pesticides and Resistance Management, February, 1998. https://archive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf.

  136. Carrière, Y., Crowder, D.W. & Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bourguet, D. et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).

    Article  Google Scholar 

  138. Cui, J., Luo, J., Van Der Werf, W., Ma, Y. & Xia, J. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. J. Econ. Entomol. 104, 673–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Zhao, J.-Z. et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 102, 8426–8430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gustafson, D.I., Head, G.P. & Caprio, M.A. Modeling the impact of alternative hosts on Helicoverpa zea adaptation to Bollgard cotton. J. Econ. Entomol. 99, 2116–2124 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA Biotechnology Risk Assessment Grant 2014-33522-22214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E Tabashnik.

Ethics declarations

Competing interests

B.T. is coauthor of a patent on modified Bt toxins, “Suppression of Resistance in Insects to Bacillus thuringiensis Cry Toxins, Using Toxins that do not Require the Cadherin Receptor” (patent numbers: CA2690188A1, CN101730712A, EP2184293A2,EP2184293A4, EP2184293B1, WO2008150150A2, WO2008150150A3). DuPont Pioneer, Dow AgroSciences, Monsanto, Bayer CropScience, and Syngenta did not provide funding to support this work, but may be affected financially by publication of this paper and have funded other work by the author. Y.C. has received funding from DuPont Pioneer, but DuPont Pioneer did not provide funding for this work.

Supplementary information

Supplementary Figures, Tables, and Notes

Supplementary Figures 1, Supplementary Tables 1–5, Supplementary Notes 1–2, and Supplementary Methods (PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabashnik, B., Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35, 926–935 (2017). https://doi.org/10.1038/nbt.3974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3974

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research