Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Post-translational modifications in the context of therapeutic proteins

Abstract

The majority of protein-based biopharmaceuticals approved or in clinical trials bear some form of post-translational modification (PTM), which can profoundly affect protein properties relevant to their therapeutic application. Whereas glycosylation represents the most common modification, additional PTMs, including carboxylation, hydroxylation, sulfation and amidation, are characteristic of some products. The relationship between structure and function is understood for many PTMs but remains incomplete for others, particularly in the case of complex PTMs, such as glycosylation. A better understanding of such structural-functional relationships will facilitate the development of second-generation products displaying a PTM profile engineered to optimize therapeutic usefulness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the biosynthesis of protein N-linked glycan side chains.
Figure 2

Michelle Montoya

Figure 3
Figure 4: Protein carboxylation.

Similar content being viewed by others

References

  1. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jensen, O.N. Modification specific proteomics: characterization of post translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8, 33–41 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Baumann, M. & Meri, S. Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev. Proteomics 1, 207–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Chamberlain, P. Biogenerics: Europe takes another step forward while the FDA dives for cover. Drug Discov. Today 9, 817–820 (2004).

    Article  PubMed  Google Scholar 

  5. Schellekens, H. Biosimiliar therapeutic agents: issues with bioequivalence and immunogenicity. Eur. J. Clin. Invest. 34, 797–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gerngross, T. Advances in the production of protein therapeutics in yeasts and filamentous fungi. Nat. Biotechnol. 22, 1409–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gomord, V. & Faye, L. Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, Y-C. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 26, 405–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Arolas, J.L., Aviles, F., Chang, J. & Ventura, S. Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem. Sci. 31, 292–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wong, C.H. Protein glycosylation: new challenges and opportunities. J. Org. Chem. 70, 4219–4225 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Freeze, H.H. Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Axford, J.S., Cunnane, G., Fitzgerald, O., Bresnihan, B. & Frears, E.R. Rheumatic disease differentiation using immunoglobulin G sugar printing by high density electrophoresis. J. Rheumatol. 12, 2540–2546 (2003).

    Google Scholar 

  13. Holland, M. et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA associated systemic vasculitis. Biochim. Biophys. Acta 1760, 669–677 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Bill, R., Revers, L. & Wilson, I. Protein Glycosylation (Kluwer, Dordrecht, the Netherlands, 1998).

    Book  Google Scholar 

  15. Willey, K. An elusive role for glycosylation in the structure and function of reproductive hormones. Hum. Reprod. Update 5, 330–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Kobata, A. Structure and function of the sugar chains of glycoproteins. Eur. J. Biochem. 209, 483–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Merkler, D.J. C-terminal amidated peptides—production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb. Technol. 16, 450–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. McGrath, B. Factor IX (protease zymogen). in Directory of Therapeutic Enzymes (eds. McGrath, B. & Walsh, G.) 209–238 (CRC Press, Boca Raton, FL, 2006).

    Google Scholar 

  19. Gemmill, T.R. & Trimble, R.B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jarvis, D.L., Kawar, Z.S. & Hollister, J.R. Engineering N-glycosylation pathways in the baculovirus-insect cell system. Curr. Opin. Biotechnol. 9, 528–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gomord, V. et al. Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2, 83–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Butler, M. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68, 283–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Birch, J.R. & Racher, A.J. Antibody production. Adv. Drug Deliv. Rev. 58, 671–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Borth, N., Mattanovich, D., Kunert, R. & Katinger, H. Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog. 21, 106–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Harris, R.J. Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol. (Basel) 122, 117–127 (2005).

    CAS  Google Scholar 

  26. Smalling, R., Foot, M., Molineux, G., Swanson, S.J. & Elliott, S. Drug-induced and antibody-mediated pure red cell aplasia: a review of literature and current knowledge. Biotechnol. Annu. Rev. 10, 237–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Delorme, E. et al. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31, 9871–9876 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Egrie, J. & Browne, J. Development and characterization of a novel erythropoiesis stimulating protein (NESP). Br. J. Cancer 84 (Suppl. 1), 3–10 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thorpe, R. & Swanson, S.J. Assays for detecting and diagnosing antibody-mediated pure red cell aplasia (PRCA): an assessment of available procedures. Nephrol. Dial. Transplant. 20 (Suppl. 4), 16–22 (2005).

    Article  CAS  Google Scholar 

  30. Bardor, M., Faye, L. & Lerouge, P. Analysis of the N-glycosylation of recombinant glycoproteins produced in transgenic plants. Trends Plant Sci. 4, 376–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. FDA Guidance Concerning Demonstration of Comparability of Human Biological Products, Including Therapeutic Biotechnology-derived Products, April 1996. <http://www.fda.gov/cder/guidance/compare.htm>

  32. Campbell, C. & Yarema, K. Large scale approaches for glycobiology. Genome Biol. 6, 236 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hang, H.C. Betozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Med. Chem. 13, 5021–5034 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Brooks, S. Appropriate glycosylation of recombinant proteins for human use—implications of choice of expression system. Mol. Biotechnol. 28, 241–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Gagneux, P. & Varki, A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Shriver, Z., Raguram, S. & Sasisekhran, R. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Grimm, C.C., Grimm, D. & Bergman, C. The analysis of oligosaccharides by mass spectrometry. ACS Symp. Ser. 849, 32–42 (2003).

    Article  CAS  Google Scholar 

  38. Medzihradszky, K. Characterization of protein N-glycosylation. Methods Enzymol. 405, 116–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Browne, J. et al. Erythropoietin: gene cloning, protein structure and biological properties. Cold Spring Harb. Symp. Quant. Biol. 51, 693–702 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Egrie, J., Grant, J., Gillies, D., Aoki, K. & Strickland, T. The role of carbohydrate on the biological activity of erythropoietin. Glycoconj. J. 10, 263 (1993).

    Article  Google Scholar 

  41. Erbayraktar, S. et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl Acad. Sci. USA 100, 6741–6746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kompella, A. & Lee, V. Pharmacokinetics of peptide and protein drugs. in Peptide and Protein Drug Delivery (ed. Lee, V.) 391–484 (Marcel Dekker, NY, 1991).

    Google Scholar 

  43. Takeuchi, M. & Kobata, A. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1, 337–346 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Wasley, L. et al. The importance of N-linked and O-linked oligosaccharides for the biosynthesis and in vivo and in vitro biological activity of erythropoietin. Blood 77, 2624–2632 (1991).

    CAS  PubMed  Google Scholar 

  45. Nezlin, R. & Ghetie, V. Interactions of immunoglobulins outside the antigen-combining site. Adv. Immunol. 82, 155–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Jefferis, R. et al. A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins. Biochem. J. 268, 529–537 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farooq, M., Takahashi, N., Arrol, H., Drayson, M. & Jefferis, R. Glycosylation of polyclonal and paraprotein IgG in multiple myeloma. Glycoconj. J. 14, 489–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Patel, T., Parekh, R., Moellering, B. & Prior, C. Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem. J. 285, 839–845 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galili, U. The α-gal epitope (Gal α1–3 Gal β1–4GlcNAc-R) in xenotransplantation. Biochimie 83, 557–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Dor, F.J., Alt, A. & Cooper, D.K. Gal α1,3 Gal expression on porcine pancreatic islets, testis, spleen, and thymus. Xenotransplantation 11, 101–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Cooper, D.K. Xenoantigens and xenoantibodies. Xenotransplantation 5, 6–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Miwa, Y. et al. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation 11, 247–253 (2004).

    Article  PubMed  Google Scholar 

  53. Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Glennie, M.J. & van de Winkel, J.G. Renaissance of cancer therapeutic antibodies. Drug Discov. Today 8, 503–510 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J.E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Davies, J., et al. Expression of GnT III in a recombinant anti-CD 20 CHO production cell line: expression of antibodies with altered glycoforms lead to an increase in ADCC through higher affinity for Fcγ RIII. Biotechnol. Bioeng. 74, 288–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Yamane-Ohnuki, M. et al. Establishment of a FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependant cellular cytotoxicity. Biotechnol. Bioeng. 87, 614–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Huang, L., Biolosi, S., Bales, K.R. & Kuchibhotla, U. Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal. Biochem. 349, 197–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Pestka, S. & Langer, J. Interferons and their actions. Annu. Rev. Biochem. 56, 727–777 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Todd, P. & Goa, K. Interferon-γ-1b. Drugs 43, 111–122 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Jonasch, E. & Huluska, F. Interferons in oncological practice: a review of interferon biology, clinical applications and toxicities. Oncologist 6, 34–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Conradt, H.S. et al. Structure of the carbohydrate moiety of human interferon-β secreted by a recombinant Chinese hamster ovary cell line. J. Biol. Chem. 262, 14600–14605 (1987).

    CAS  PubMed  Google Scholar 

  64. Runkel, L. et al. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-β (IFN-β). Pharm. Res. 15, 641–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Rinderknecht, E., O'Connor, B. & Rodriguez, H. Natural human interferon-γ—complete amino acid sequence and determination of sites of glycosylation. J. Biol. Chem. 259, 6790–6797 (1984).

    CAS  PubMed  Google Scholar 

  66. Sareneva, T., Pirhonen, J., Cantell, K. & Julkunen, I. N-glycosylation of human interferon-γ—glycans at Asn-25 are critical for protease resistance. Biochem. J. 308, 9–14 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sareneva, T., Pirhonen, J., Cantell, K. Kalkkinen, N. & Julkunen, I. Role of glycosylation in the synthesis, dimerization and secretion of human interferon-γ. Biochem. J. 303, 831–840 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sareneva, T., Mortz, E., Tolo, H., Roepstorff, P. & Julkunen, I. Biosynthesis and N-glycosylation of human interferon-γ. Eur. J. Biochem. 242, 191–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Bennett, W.F. Two forms of tissue-type plasminogen activator (tPA) differ at a single specific glycosylation site. Thromb. Haemost. 50, 106 (1983).

    Article  Google Scholar 

  70. Einarsson, M., Brandt, J. & Kaplan, L. Large scale purification of human tissue-type plasminogen activator using monoclonal antibodies. Biochim. Biophys. Acta 830, 1–10 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Wittwer, A. et al. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 28, 7662–7669 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Beebe, D. & Aronson, D. Turnover of tPA in rabbits: influence of carbohydrate moieties. Thromb. Res. 51, 11–22 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Cole, E., Nichols, E., Poisson, L., Harnois, M. & Livingston, D. In vivo clearance of tissue plasminogen activator: the complex role of sites of glycosylation and level of sialylation. Fibrinolysis 7, 15–22 (1993).

    Article  CAS  Google Scholar 

  74. Andersen, D.C., Bridges, T. Gawlitzek, M. & Hoy, C. Multiple cell culture factors can effect the glycosylation of Ans-184 in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 70, 25–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Pierce, J. & Parsons, T. Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50, 465–495 (1981).

    Article  CAS  PubMed  Google Scholar 

  76. Gharib, S., Wierman, M., Shupnik, M. & Chin, W. Molecular biology of the pituitary gonadotropins. Endocr. Rev. 11, 177–199 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Ulloa-Aguirre, A., Timossi, C., Damain-Matsumura, P. & Diaz, J. Role of glycosylation in function of follicle-stimulating hormone. Endocrine 11, 205–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Ulloa-Aguirre, A., Maldonado, A., Damain-Matsumura, P. & Timossi, C. Endocrine regulation of gonadotropin glycosylation. Arch. Med. Res. 32, 520–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Matzuk, M. & Boime, I. The role of the aspargine-linked oligosaccharides of the α-subunit in the secretion and assembly of human chorionic gonadotropin. J. Cell Biol. 106, 1049–1059 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Matzuk, M. & Boime, I. Mutagenesis and gene transfer define site-specific roles of the gonadotropin oligosaccharides. Biol. Reprod. 40, 48–53 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Sairam, M. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 3, 1915–1926 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, P., Kaetzel, D., Nilson, J. & Baenziger, J. The sialylated oligosaccharides of recombinant bovine lutropin modulate hormone bioactivity. J. Biol. Chem. 265, 874–881 (1990).

    CAS  PubMed  Google Scholar 

  83. Hansson, K. & Stenflo, J. Post-translational modifications in proteins involved in blood coagulation. J. Thromb. Haemost. 3, 2633–2648 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Kaufman, R. Post translational modifications required for coagulation factor secretion and function. Thromb. Haemost. 79, 1068–1079 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Itoh, S., Kawasaki, N., Ohta, M. & Hayakawa, T. Structural analysis of a glycoprotein by liquid chromatography–mass spectrometry and liquid chromatography with tandem mass spectrometry—application to recombinant human thrombomodulin. J. Chromatogr. A 978, 141–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Arruda, V.R. et al. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 97, 130–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Stenflo, J. & Ganrot, P. Vitamin K and the biosynthesis of prothrombin: Identification and purification of a dicumarol-induced abnormal prothrombin from bovine plasma. J. Biol. Chem. 247, 8160–8166 (1972).

    CAS  PubMed  Google Scholar 

  88. Furie, B. & Furie, B.C. Molecular basis of vitamin K dependent γ-carboxylation. Blood 75, 1753–1762 (1990).

    CAS  PubMed  Google Scholar 

  89. Wu, S.M., Cheung, W.F., Frazier, D. & Stafford, D.W. Cloning and expression of the cDNA for human γ-glutamyl carboxylase. Science 254, 1634–1636 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Knobloch, J.E. & Suttie, J.W. Vitamin K dependent carboxylase. Control of enzyme activity by the propeptide region of factor X. J. Biol. Chem. 262, 15334–15337 (1987).

    CAS  PubMed  Google Scholar 

  91. Morris, D.P., Stevens, R.D., Wright, D.J. & Stafford, D.W. Processive post-translational modification. Vitamin K–dependent carboxylation of a peptide substrate. J. Biol. Chem. 270, 30491–30498 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Stenina, O., Pudota, B.N., McNally, B.A., Hommema, E.L. & Berkner, K.L. Tethered processivity of the vitamin K–dependent carboxylase: factor IX is efficiently modified in a mechanism which distinguishes Gla's from Glu's and which accounts for comprehensive carboxylation in vivo. Biochemistry 40, 10301–10309 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lin, P.J., Straight, D.L. & Stafford, D.W. Binding of the factor IX γ-carboxyglutamic acid domain to the vitamin K–dependent γ-glutamyl carboxylase active site induces an allosteric effect that may ensure processive carboxylation and regulate the release of carboxylated product. J. Biol. Chem. 279, 6560–6566 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Camire, R.M., Larson, P.J., Stafford, D.W. & High, K.A. Enhanced γ-carboxylation of recombinant factor X using a chimeric construct containing the prothrombin propeptide. Biochemistry 39, 14322–14329 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Sun, Y.M., Jin, D.Y., Camire, R.M. & Stafford, D.W. Vitamin K epoxide reductase significantly improves carboxylation in a cell line overexpressing factor X. Blood 106, 3811–3815 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Jia, S. et al. cDNA cloning and expression of bovine aspartyl (asparaginyl) β-hydroxylase. J. Biol. Chem. 267, 14322–14327 (1992).

    CAS  PubMed  Google Scholar 

  97. Thim, S. et al. Amino acid sequence and post translational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry 27, 7785–7793 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Jurlander, B. et al. Recombinant activated factor VII (rFVIIa): Characterization, manufacturing and clinical development. Semin. Thromb. Hemost. 27, 373–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Wasley, L.C., Rehemtulla, A., Bristol, J.A. & Kaufman, R.J. PACE/furin can process the vitamin K–dependent pro–factor IX precursor within the secretory pathway. J. Biol. Chem. 268, 8458–8465 (1993).

    CAS  PubMed  Google Scholar 

  100. Yan, S.B. et al. Characterization and novel purification of recombinant human protein C from three mammalian cell lines. Biotechnology 8, 655–661 (1990).

    CAS  PubMed  Google Scholar 

  101. Gerlitz, B. et al. Effect of mutation of Asp 71 on human protein C activation and function. J. Cell. Biochem. 44 (Suppl. S14E), 201 (1990).

    Google Scholar 

  102. Grinnell, B.W., Yan, S.B. & Macias, W.L. Activated protein C. in: Directory of Therapeutic Enzymes (eds. McGrath, B. & Walsh, G.) 69–95 (CRC Press, Boca Raton, FL, 2006).

    Google Scholar 

  103. Moore, K.L. The biology and enzymology of protein tyrosine-O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Nicholas, H.B., Jr., Chan, S.S. & Rosenquist, G.L. Reevaluation of the determinants of tyrosine sulfation. Endocrine 11, 285–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Costagliola, S. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO J. 21, 504–513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stone, S.R. & Hofsteenge, J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25, 4622–4628 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Higuchi, M. et al. Characterization of mutants in the factor VIII gene by direct sequencing of complementary genomic DNA. Genomics 6, 65–71 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Prigge, S.T., Mains, R.E., Eipper, B.A. & Amzel, L.M. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell. Mol. Life Sci. 57, 1236–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Bradbury, A.F. & Smyth, D.G. Peptide amidation. Trends Biochem. Sci. 16, 112–115 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Gigoux, V. et al. Arginine 336 and asparagine 333 of the human cholecystokinin-A receptor binding site interact with the penultimate aspartic acid at the C terminal amide of cholecystokinin. J. Biol. Chem. 274, 20457–20464 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Edison, A.S., Espinoza, E. & Zachariah, C. Conformational assemblies: the role of neuropeptide structures in receptor binding. J. Neurosci. 19, 6318–6326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bignon, E. et al. SR 146131: a new potent, orally active and selective nonpeptide cholecystokinin subtype 1 receptor agonist II. In vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 289, 752–761 (1999).

    CAS  PubMed  Google Scholar 

  116. Hong, D., Zhuang, M.Q., Li, M., Chen, C.Q. & Mao, J.F. Production of a recombinant salmon calcitonin by amidation of a precursor peptide using enzymatic transacylation and photolysis in vitro. Biochem. Biophys. Res. Commun. 267, 362–367 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Hong, B., Wu, B.Y. & Li, Y. Production of a C-terminal amidated recombinant salmon calcitonin in Streptomyces lividans. Appl. Biochem. Biotechnol. 110, 113–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Chakraborty, C. Nandi, S. & Sinha, S. Overexpression, purification and characterization of salmon calcitonin, a therapeutic protein, in Streptomyces avermitilis. Prot. Pept. Lett. 11, 165–173 (2004).

    Article  CAS  Google Scholar 

  119. Walsh, G. Second-generation biopharmaceuticals. Eur. J. Pharm. Biopharm. 58, 185–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Furbish, F.S., Steer, C., Barranger, J., Jones, J. & Brady, R. Uptake of native and desialylated glucocerebrosidase by rat hepatocytes and Kupffer cells. Biochem. Biophys. Res. Commun. 81, 1047–1053 (1978).

    Article  CAS  PubMed  Google Scholar 

  121. Edmunds, T. β-glucocerebrosidase, ceredase and cerezyme. in Directory of Therapeutic Enzymes (eds. McGrath, B. & Walsh, G.) 117–133 (CRC Press, Boca Raton, FL, 2006).

    Google Scholar 

  122. Harris, J.M., Martin, N.E. & Modi, M. Pegylation. A novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Rizzari, C. et al. A pharmacological study on pegylated asparaginase used in front-line treatment of children with acute lymphoblastic leukemia. Haematologica 91, 24–31 (2006).

    CAS  PubMed  Google Scholar 

  124. Roberts, M.J., Bentley, M.D. & Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Veronese, F.M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Foster, G.R. Pegylated interferons: chemical and clinical differences. Aliment. Pharmacol. Ther. 20, 825–830 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Parkinson, C. & Trainer, P.J. The place of pegvisomant in the management of acromegaly. Endocron. 13, 408–416 (2003).

    Google Scholar 

  128. Lyman, G.H. Pegfilgrastim: a granulocyte colony-stimulating factor with sustained duration of action. Expert Opin. Biol. Ther. 5, 1635–1646 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Goldman-Levine, J.D. & Lee, K.W. Insulin detemir—a new basal insulin analogue. Ann. Pharmacother. 39, 502–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Home, P. & Kurtzhals, P. Insulin detemir: from concept to clinical experience. Expert Opin. Pharmacother. 7, 325–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Stomp, A.M. The duckweeds: a valuable plant for biomanufacturing. Biotechnol. Annu. Rev. 11, 69–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Wacker, M. et al. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl Acad. Sci. USA 103, 7088–7093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Walsh, G. Therapeutic insulins and their large-scale manufacture. Appl. Microbiol. Biotechnol. 67, 151–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Hopkin, M. Drug to blame for clinical-trial disaster? news@nature.com [online], April 5, 2006, http://www.nature.com/news/2006/060403/full/060403-8.html.

  136. Dwek, R.A., Butters, T.D., Platt, F. & Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov. 1, 65–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. White, G.C., Beebe, A. & Nielsen, B. Recombinant Factor IX. Thromb. Haemost. 78, 261–265 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kevin Moore of the Oklahoma Medical Research Foundation and Chiranjib Chakraborty, National Sun Yat-sen University (Kaohsiung; Taiwan) for their help with portions of the manuscript, and Darrell Stafford of the University of North Carolina (Chapel Hill) for his contributions of text and a figure for the carboxylation section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Walsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, G., Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24, 1241–1252 (2006). https://doi.org/10.1038/nbt1252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing