Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol

Abstract

We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA–expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Net weight increases of larvae reared on a gossypol-supplemented diet.
Figure 2: Expression pattern of CYP6AE14.
Figure 3: CYP6AE14 suppression in larvae fed leaves expressing CYP6AE14 dsRNA.
Figure 4: Enhanced effect of gossypol on larval growth fed on dsRNA leaves.
Figure 5: Suppression of GST1 by dsRNA-producing plants.
Figure 6: Suppression of CYP6AE14 by dcl2 dcl3 dcl4 triple mutant plants expressing dsCYP6AE14.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Gatehouse, J.A. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156, 145–169 (2002).

    Article  CAS  Google Scholar 

  2. Mazumdar-Leighton, S. & Broadway, R.M. Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem. Mol. Biol. 31, 633–644 (2001).

    Article  CAS  Google Scholar 

  3. Wittstock, U. et al. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA 101, 4859–4864 (2004).

    Article  CAS  Google Scholar 

  4. Shelton, A.M., Zhao, J.Z. & Roush, R.T. Economic, ecological, diet safety, and social consequences of the deployment of bt transgenic plants. Annu. Rev. Entomol. 47, 845–881 (2002).

    Article  CAS  Google Scholar 

  5. Carriere, Y. et al. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 100, 1519–1523 (2003).

    Article  CAS  Google Scholar 

  6. Gahan, L.J., Gould, F. & Heckel, D.G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857–860 (2001).

    Article  CAS  Google Scholar 

  7. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  8. Wesley, S.V. et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590 (2001).

    Article  CAS  Google Scholar 

  9. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  Google Scholar 

  10. Aravin, A.A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    Article  CAS  Google Scholar 

  11. Tenllado, F. & Diaz-Ruiz, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 75, 12288–12297 (2001).

    Article  CAS  Google Scholar 

  12. Niu, Q.W. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428 (2006).

    Article  CAS  Google Scholar 

  13. Bettencourt, R., Terenius, O. & Faye, I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol. Biol. 11, 267–271 (2002).

    Article  CAS  Google Scholar 

  14. Ohnishi, A., Hull, J.J. & Matsumoto, S. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103, 4398–4403 (2006).

    Article  CAS  Google Scholar 

  15. Eleftherianos, I. et al. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem. Mol. Biol. 36, 517–525 (2006).

    Article  CAS  Google Scholar 

  16. Turner, C.T. et al. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383–391 (2006).

    Article  CAS  Google Scholar 

  17. Tan, X.P. et al. Expression pattern of (+)-delta-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta 210, 644–651 (2000).

    Article  CAS  Google Scholar 

  18. Luo, P., Wang, Y.H., Wang, G.D., Essenberg, M. & Chen, X.Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28, 95–104 (2001).

    Article  CAS  Google Scholar 

  19. Benedict, C.R., Martin, G.S., Liu, J., Puckhaber, L. & Magill, C.W. Terpenoid aldehyde formation and lysigenous gland storage sites in cotton: variant with mature glands but suppressed levels of terpenoid aldehydes. Phytochemistry 65, 1351–1359 (2004).

    Article  CAS  Google Scholar 

  20. Du, L., Ge, F., Zhu, S. & Parajulee, M.N. Effect of cotton cultivar on development and reproduction of Aphis gossypii (Homoptera: Aphididae) and its predator Propylaea japonica (Coleoptera: Coccinellidae). J. Econ. Entomol. 97, 1278–1283 (2004).

    Article  Google Scholar 

  21. Stipanovic, R.D., Lopez, J.D., Jr, Dowd, M.K., Puckhaber, L.S. & Duke, S.E. Effect of racemic and (+)- and (−)-gossypol on the survival and development of Helicoverpa zea larvae. J. Chem. Ecol. 32, 959–968 (2006).

    Article  CAS  Google Scholar 

  22. Hodgson, E. et al. Pesticide-metabolizing enzymes. Toxicol. Lett. 82–83, 73–81 (1995).

    Article  Google Scholar 

  23. Waters, L.C., Zelhof, A.C., Shaw, B.J. & Ch'ang, L.Y. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc. Natl. Acad. Sci. USA 89, 4855–4859 (1992).

    Article  CAS  Google Scholar 

  24. Li, W., Petersen, R.A., Schuler, M.A. & Berenbaum, M.R. CYP6B cytochrome p450 monooxygenases from Papilio canadensis and Papilio glaucus: potential contributions of sequence divergence to host plant associations. Insect Mol. Biol. 11, 543–551 (2002).

    Article  CAS  Google Scholar 

  25. Scott, J.G., Liu, N. & Wen, Z. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 121, 147–155 (1998).

    Article  CAS  Google Scholar 

  26. Li, W., Zangerl, A.R., Schuler, M.A. & Berenbaum, M.R. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol. Biol. 13, 603–613 (2004).

    Article  CAS  Google Scholar 

  27. Scott, J.G. & Wen, Z. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag. Sci. 57, 958–967 (2001).

    Article  CAS  Google Scholar 

  28. Berge, J.B., Feyereisen, R. & Amichot, M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Phil. Trans. R. Soc. Lond. B 353, 1701–1705 (1998).

    Article  CAS  Google Scholar 

  29. Tabara, H., Grishok, A. & Mello, C.C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  Google Scholar 

  30. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  Google Scholar 

  31. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  Google Scholar 

  32. Huang, G., Allen, R., Davis, E.L., Baum, T.J. & Hussey, R.S. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 103, 14302–14306 (2006).

    Article  CAS  Google Scholar 

  33. Kono, Y. & Fridovich, I. Superoxide radical inhibits catalase. J. Biol. Chem. 257, 5751–5754 (1982).

    CAS  PubMed  Google Scholar 

  34. Bouche, N., Lauressergues, D., Gasciolli, V. & Vaucheret, H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25, 3347–3356 (2006).

    Article  CAS  Google Scholar 

  35. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  Google Scholar 

  36. Wang, X.P. & Hobbs, A.A. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem. Mol. Biol. 25, 1001–1009 (1995).

    Article  CAS  Google Scholar 

  37. Ranasinghe, C. & Hobbs, A.A. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner): possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochem. Mol. Biol. 28, 571–580 (1998).

    Article  CAS  Google Scholar 

  38. Ranasinghe, C. & Hobbs, A.A. Isolation and characterisation of a cytochrome b5 cDNA clone from Helicoverpa armigera (Hubner): possible involvement of cytochrome b5 in cytochrome P450 CYP6B7 activity towards pyrethroids. Insect Biochem. Mol. Biol. 29, 145–151 (1999).

    Article  CAS  Google Scholar 

  39. Li, X., Berenbaum, M.R. & Schuler, M.A. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol. Biol. 11, 343–351 (2002).

    Article  CAS  Google Scholar 

  40. Sasabe, M., Wen, Z., Berenbaum, M.R. & Schuler, M.A. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene 338, 163–175 (2004).

    Article  CAS  Google Scholar 

  41. Li, X., Schuler, M.A. & Berenbaum, M.R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419, 712–715 (2002).

    Article  CAS  Google Scholar 

  42. Palauqui, J.C., Elmayan, T., Pollien, J.M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  Google Scholar 

  43. Voinnet, O. & Baulcombe, D.C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  Google Scholar 

  44. Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    Article  CAS  Google Scholar 

  45. Smith, L.M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19, 1507–1521 (2007).

    Article  CAS  Google Scholar 

  46. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  Google Scholar 

  47. Peng, J.Y. et al. Preliminary studies on differential defense responses induced during plant communication. Cell Res. 15, 187–192 (2005).

    Article  CAS  Google Scholar 

  48. Johansen, L.K. & Carrington, J.C. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126, 930–938 (2001).

    Article  CAS  Google Scholar 

  49. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Z. Xie, Bin Luo and Yuqian Jiang for experimental assistance and David Nelson for P450 nomenclature. This research was supported by The National Science Foundation of China (30421001), The Chinese Academy of Sciences (KSCX2-SW-329), and The Ministry of Science and Technology of China (2007CB108800). The A. thaliana dcl2 dcl3 dcl4 triple mutant, generated from dcl2-1 (SALK 064627), dcl3-1 (SALK 005512) and dcl4-2 (GABI160G05), and rosette leaves of the A. thaliana dcl2 dcl3 dcl4 triple mutant, generated from dcl2-1 (SALK 064627), dcl3-1 (SALK 005512) and dcl4-2 (GABI160G05), was provided by Z. Xie.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.C. and Y.-B.M. designed the research; Y.-B.M. performed most of the experiments; Y.-B.M. and J.-W.W. designed the dsRNA constructs; W.-J.C., L.-J.W., G.-J.H., X.-Y.T. did some of the RNA analysis experiments; Y.-B.M., X.-Y.C. and Y.-P.H. wrote the manuscript.

Corresponding author

Correspondence to Xiao-Ya Chen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, YB., Cai, WJ., Wang, JW. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25, 1307–1313 (2007). https://doi.org/10.1038/nbt1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing