Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein promiscuity and its implications for biotechnology

Abstract

Molecular recognition between proteins and their interacting partners underlies the biochemistry of living organisms. Specificity in this recognition is thought to be essential, whereas promiscuity is often associated with unwanted side effects, poor catalytic properties and errors in biological function. Recent experimental evidence suggests that promiscuity, not only in interactions but also in the actual function of proteins, is not as rare as was previously thought. This has implications not only for our fundamental understanding of molecular recognition and how protein function has evolved over time but also in the realm of biotechnology. Understanding protein promiscuity is becoming increasingly important not only to optimize protein engineering applications in areas as diverse as synthetic biology and metagenomics but also to lower attrition rates in drug discovery programs, identify drug interaction surfaces less susceptible to escape mutations and potentiate the power of polypharmacology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structural flexibility and promiscuous binding.
Figure 3: The short-chain dehydrogenase/reductase proteins.
Figure 4: Toy schemata illustrating how size and complexity of a protein's interacting partners can affect the chances of an effective binding.

Similar content being viewed by others

References

  1. O'Brien, P.J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    CAS  PubMed  Google Scholar 

  2. Copley, S.D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272 (2003).

    CAS  PubMed  Google Scholar 

  3. Colman, P.M. & Smith, B.J. Specificity and promiscuity in protein-ligand and protein-protein interactions. Aust. J. Chem. 56, 763–767 (2003).

    CAS  Google Scholar 

  4. Khersonsky, O., Roodveldt, C. & Tawfik, D.S. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 10, 498–508 (2006).

    CAS  PubMed  Google Scholar 

  5. Hult, K. & Berglund, P. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 25, 231–238 (2007).

    CAS  PubMed  Google Scholar 

  6. Bornscheuer, U.T. & Kazlauskas, R.J. Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Edn Engl. 43, 6032–6040 (2004).

    CAS  Google Scholar 

  7. Jeffery, C.J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    CAS  PubMed  Google Scholar 

  8. D'Ari, R. & Casadesus, J. Underground metabolism. Bioessays 20, 181–186 (1998).

    CAS  PubMed  Google Scholar 

  9. Sriram, G., Martinez, J.A., McCabe, E.R., Liao, J.C. & Dipple, K.M. Single-gene disorders: what role could moonlighting enzymes play? Am. J. Hum. Genet. 76, 911–924 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, J. & Copley, S.D. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Biochemistry 46, 12501–12511 (2007).

    CAS  PubMed  Google Scholar 

  11. Miller, B.G. & Raines, R.T. Identifying latent enzyme activities: substrate ambiguity within modern bacterial sugar kinases. Biochemistry 43, 6387–6392 (2004).

    CAS  PubMed  Google Scholar 

  12. James, L.C. & Tawfik, D.S. Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem. Sci. 28, 361–368 (2003).

    CAS  PubMed  Google Scholar 

  13. Farinas, E.T., Bulter, T. & Arnold, F.H. Directed enzyme evolution. Curr. Opin. Biotechnol. 12, 545–551 (2001).

    CAS  PubMed  Google Scholar 

  14. Andrianantoandro, E., Basu, S., Karig, D.K. & Weiss, R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006 0028 (2006).

    PubMed  Google Scholar 

  15. Watanabe, H., Takehana, K., Date, M., Shinozaki, T. & Raz, A. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56, 2960–2963 (1996).

    CAS  PubMed  Google Scholar 

  16. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    CAS  PubMed  Google Scholar 

  17. Jensen, R.A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).

    CAS  PubMed  Google Scholar 

  18. Todd, A.E., Orengo, C.A. & Thornton, J.M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113–1143 (2001).

    CAS  PubMed  Google Scholar 

  19. Nobeli, I., Spriggs, R.V., George, R.A. & Thornton, J.M. A ligand-centric analysis of the diversity and evolution of protein-ligand relationships in E.coli. J. Mol. Biol. 347, 415–436 (2005).

    CAS  PubMed  Google Scholar 

  20. Devos, D. & Valencia, A. Practical limits of function prediction. Proteins 41, 98–107 (2000).

    CAS  PubMed  Google Scholar 

  21. Gerlt, J.A. & Babbitt, P.C. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70, 209–246 (2001).

    CAS  PubMed  Google Scholar 

  22. Gerlt, J.A., Babbitt, P.C. & Rayment, I. Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch. Biochem. Biophys. 433, 59–70 (2005).

    CAS  PubMed  Google Scholar 

  23. Glasner, M.E., Gerlt, J.A. & Babbitt, P.C. Evolution of enzyme superfamilies. Curr. Opin. Chem. Biol. 10, 492–497 (2006).

    CAS  PubMed  Google Scholar 

  24. Chiang, R.A., Sali, A. & Babbitt, P.C. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies. PLOS Comput. Biol. 4, e1000142 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Arevalo, J.H., Taussig, M.J. & Wilson, I.A. Molecular basis of crossreactivity and the limits of antibody-antigen complementarity. Nature 365, 859–863 (1993).

    CAS  PubMed  Google Scholar 

  26. Kliewer, S.A., Goodwin, B. & Willson, T.M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23, 687–702 (2002).

    CAS  PubMed  Google Scholar 

  27. Paulsen, I.T. Multidrug efflux pumps and resistance: regulation and evolution. Curr. Opin. Microbiol. 6, 446–451 (2003).

    CAS  PubMed  Google Scholar 

  28. Wong, S.K. G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals 12, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  29. Kallberg, Y., Oppermann, U., Jornvall, H. & Persson, B. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci. 11, 636–641 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, Q., Fang, J. & Li, J. Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase. Biochem. J. 360, 617–623 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Allende, C.C. & Allende, J.E. Promiscuous subunit interactions: a possible mechanism for the regulation of protein kinase CK2. J. Cell. Biochem. Suppl. 30–31, 129–136 (1998).

    PubMed  Google Scholar 

  32. Wietek, C. & O'Neill, L.A. Diversity and regulation in the NF-kappaB system. Trends Biochem. Sci. 32, 311–319 (2007).

    CAS  PubMed  Google Scholar 

  33. Lazcano, A., Diaz-Villagomez, E., Mills, T. & Oro, J. On the levels of enzymatic substrate specificity: implications for the early evolution of metabolic pathways. Adv. Space Res. 15, 345–356 (1995).

    CAS  PubMed  Google Scholar 

  34. Valeyev, N.V., Bates, D.G., Heslop-Harrison, P., Postlethwaite, I. & Kotov, N.V. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC Syst. Biol. 2, 48 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Kirschner, K. & Bisswanger, H. Multifunctional proteins. Annu. Rev. Biochem. 45, 143–166 (1976).

    CAS  PubMed  Google Scholar 

  36. Pocker, Y. & Stone, J.T. The catalytic versatility of erythrocyte carbonic anhydrase. VII. Kinetic studies of esterase activity and competitive inhibition by substrate analogs. Biochemistry 7, 3021–3031 (1968).

    CAS  PubMed  Google Scholar 

  37. Head, M.W. & Goldman, J.E. Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol. Appl. Neurobiol. 26, 304–312 (2000).

    CAS  PubMed  Google Scholar 

  38. van Noort, J.M. et al. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801 (1995).

    CAS  PubMed  Google Scholar 

  39. Wang, J.T. et al. Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J. Gen. Virol. 86, 3215–3225 (2005).

    CAS  PubMed  Google Scholar 

  40. Lutz, S., Lichter, J. & Liu, L. Exploiting temperature-dependent substrate promiscuity for nucleoside analogue activation by thymidine kinase from Thermotoga maritima. J. Am. Chem. Soc. 129, 8714–8715 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennedy, M.C., Mende-Mueller, L., Blondin, G.A. & Beinert, H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc. Natl. Acad. Sci. USA 89, 11730–11734 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Noy, N. Ligand specificity of nuclear hormone receptors: sifting through promiscuity. Biochemistry 46, 13461–13467 (2007).

    CAS  PubMed  Google Scholar 

  43. Pal-Bhowmick, I., Vora, H.K. & Jarori, G.K. Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malar. J. 6, 45 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Matarasso, N., Schuster, S. & Avni, A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic Acid synthase gene expression. Plant Cell 17, 1205–1216 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Duncan, K., Edwards, R.M. & Coggins, J.R. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem. J. 246, 375–386 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogel, C., Bashton, M., Kerrison, N.D., Chothia, C. & Teichmann, S.A. Structure, function and evolution of multidomain proteins. Curr. Opin. Struct. Biol. 14, 208–216 (2004).

    CAS  PubMed  Google Scholar 

  47. Bashton, M. & Chothia, C. The generation of new protein functions by the combination of domains. Structure 15, 85–99 (2007).

    CAS  PubMed  Google Scholar 

  48. Parkison, C., Ashizawa, K., McPhie, P., Lin, K.H. & Cheng, S.Y. The monomer of pyruvate kinase, subtype M1, is both a kinase and a cytosolic thyroid hormone binding protein. Biochem. Biophys. Res. Commun. 179, 668–674 (1991).

    CAS  PubMed  Google Scholar 

  49. Mazurek, S., Boschek, C.B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. 15, 300–308 (2005).

    CAS  PubMed  Google Scholar 

  50. Koshland, D.E., Jr. Correlation of Structure and Function in Enzyme Action. Science 142, 1533–1541 (1963).

    CAS  PubMed  Google Scholar 

  51. Ma, B., Shatsky, M., Wolfson, H.J. & Nussinov, R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 11, 184–197 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. James, L.C., Roversi, P. & Tawfik, D.S. Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 (2003).

    CAS  PubMed  Google Scholar 

  53. Lange, O.F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–1475 (2008).

    CAS  PubMed  Google Scholar 

  54. Grunberg, R., Leckner, J. & Nilges, M. Complementarity of structure ensembles in protein-protein binding. Structure 12, 2125–2136 (2004).

    CAS  PubMed  Google Scholar 

  55. Ekroos, M. & Sjogren, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 103, 13682–13687 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Teague, S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2, 527–541 (2003).

    CAS  PubMed  Google Scholar 

  57. Celikel, R. et al. Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha. Science 301, 218–221 (2003).

    CAS  PubMed  Google Scholar 

  58. Dumas, J.J., Kumar, R., Seehra, J., Somers, W.S. & Mosyak, L. Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science 301, 222–226 (2003).

    CAS  PubMed  Google Scholar 

  59. Zimmermann, J. et al. Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc. Natl. Acad. Sci. USA 103, 13722–13727 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oppermann, U. et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143–144, 247–253 (2003).

    PubMed  Google Scholar 

  61. Seibert, C.M. & Raushel, F.M. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391 (2005).

    CAS  PubMed  Google Scholar 

  62. Yamniuk, A.P. & Vogel, H.J. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33–58 (2004).

    CAS  PubMed  Google Scholar 

  63. Hou, L. et al. Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J. Biol. Chem. 282, 23264–23274 (2007).

    CAS  PubMed  Google Scholar 

  64. Savir, Y. & Tlusty, T. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS ONE 2, e468 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Guillet, V., Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1, 165–176 (1993).

    CAS  PubMed  Google Scholar 

  66. Mariuzza, R.A. Multiple paths to multispecificity. Immunity 24, 359–361 (2006).

    CAS  PubMed  Google Scholar 

  67. Sethi, D.K., Agarwal, A., Manivel, V., Rao, K.V. & Salunke, D.M. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  68. Spiller, B., Gershenson, A., Arnold, F.H. & Stevens, R.C. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96, 12305–12310 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Orencia, M.C., Hanson, M.A. & Stevens, R.C. Structural analysis of affinity matured antibodies and laboratory-evolved enzymes. Adv. Protein Chem. 55, 227–259 (2000).

    CAS  PubMed  Google Scholar 

  70. Schmidt, D.M. et al. Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily. Biochemistry 42, 8387–8393 (2003).

    CAS  PubMed  Google Scholar 

  71. Woodhall, T., Williams, G., Berry, A. & Nelson, A. Creation of a tailored aldolase for the parallel synthesis of sialic acid mimetics. Angew. Chem. Int. Edn. Engl. 44, 2109–2112 (2005).

    CAS  Google Scholar 

  72. Babbitt, P.C. & Gerlt, J.A. Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities. J. Biol. Chem. 272, 30591–30594 (1997).

    CAS  PubMed  Google Scholar 

  73. Raillard, S. et al. Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8, 891–898 (2001).

    CAS  PubMed  Google Scholar 

  74. Taylor Ringia, E.A. et al. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis. Biochemistry 43, 224–229 (2004).

    CAS  PubMed  Google Scholar 

  75. Panchenko, A.R., Wolf, Y.I., Panchenko, L.A. & Madej, T. Evolutionary plasticity of protein families: coupling between sequence and structure variation. Proteins 61, 535–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wagner, A. Robustness, evolvability, and neutrality. FEBS Lett. 579, 1772–1778 (2005).

    CAS  PubMed  Google Scholar 

  78. Stockwell, G.R. & Thornton, J.M. Conformational diversity of ligands bound to proteins. J. Mol. Biol. 356, 928–944 (2006).

    CAS  PubMed  Google Scholar 

  79. Perola, E. & Charifson, P.S. Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J. Med. Chem. 47, 2499–2510 (2004).

    CAS  PubMed  Google Scholar 

  80. Denessiouk, K.A. & Johnson, M.S. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins 38, 310–326 (2000).

    CAS  PubMed  Google Scholar 

  81. Azzaoui, K. et al. Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem 2, 874–880 (2007).

    CAS  PubMed  Google Scholar 

  82. Allu, T.K. & Oprea, T.I. Rapid evaluation of synthetic and molecular complexity for in silico chemistry. J. Chem. Inf. Model. 45, 1237–1243 (2005).

    CAS  PubMed  Google Scholar 

  83. Hopkins, A.L., Mason, J.S. & Overington, J.P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  84. Radhakrishnan, M.L. & Tidor, B. Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment. J. Phys. Chem. B 111, 13419–13435 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hann, M.M., Leach, A.R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    CAS  PubMed  Google Scholar 

  86. Andreini, C., Banci, L., Bertini, I. & Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5, 196–201 (2006).

    CAS  PubMed  Google Scholar 

  87. Redinbo, M.R. Promiscuity: what protects us, perplexes us. Drug Discov. Today 9, 431–432 (2004).

    PubMed  Google Scholar 

  88. Dimitrov, J.D., Lacroix-Desmazes, S., Kaveri, S.V. & Vassilev, T.L. Transition towards antigen-binding promiscuity of a monospecific antibody. Mol. Immunol. 44, 1854–1863 (2007).

    CAS  PubMed  Google Scholar 

  89. Kang, J. & Warren, A.S. Enthalpy-entropy compensation in the transition of a monospecific antibody towards antigen-binding promiscuity. Mol. Immunol. 44, 3623–3624 (2007).

    CAS  PubMed  Google Scholar 

  90. Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    CAS  PubMed  Google Scholar 

  91. Padlan, E.A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    CAS  PubMed  Google Scholar 

  92. James, L.C. & Tawfik, D.S. The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci. 12, 2183–2193 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Basdevant, N., Weinstein, H. & Ceruso, M. Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study. J. Am. Chem. Soc. 128, 12766–12777 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ohtaka, H. et al. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets. Int. J. Biochem. Cell Biol. 36, 1787–1799 (2004).

    CAS  PubMed  Google Scholar 

  95. Weber, P.C., Pantoliano, M.W. & Salemme, F.R. Crystallographic and thermodynamic comparison of structurally diverse molecules binding to streptavidin. Acta Crystallogr. D Biol. Crystallogr. 51, 590–596 (1995).

    CAS  PubMed  Google Scholar 

  96. Brannigan, J.A. & Wilkinson, A.J. Protein engineering 20 years on. Nat. Rev. Mol. Cell Biol. 3, 964–970 (2002).

    CAS  PubMed  Google Scholar 

  97. Leisola, M. & Turunen, O. Protein engineering: opportunities and challenges. Appl. Microbiol. Biotechnol. 75, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  98. Bornscheuer, U.T. & Pohl, M. Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5, 137–143 (2001).

    CAS  PubMed  Google Scholar 

  99. Arnold, F.H. Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257 (2001).

    CAS  PubMed  Google Scholar 

  100. Matsumura, I. & Ellington, A.D. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305, 331–339 (2001).

    CAS  PubMed  Google Scholar 

  101. Jurgens, C. et al. Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc. Natl. Acad. Sci. USA 97, 9925–9930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fischbach, M.A. & Clardy, J. One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007).

    CAS  PubMed  Google Scholar 

  103. Gancedo, C. & Flores, C.L. Moonlighting proteins in yeasts. Microbiol. Mol. Biol. Rev. 72, 197–210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pleiss, J. The promise of synthetic biology. Appl. Microbiol. Biotechnol. 73, 735–739 (2006).

    CAS  PubMed  Google Scholar 

  105. Merlot, C. In silico methods for early toxicity assessment. Curr. Opin. Drug Discov. Devel. 11, 80–85 (2008).

    CAS  PubMed  Google Scholar 

  106. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    CAS  PubMed  Google Scholar 

  107. Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA 104, 20523–20528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Trubetskoy, O.V. et al. High throughput screening assay for UDP-glucuronosyltransferase 1A1 glucuronidation profiling. Assay Drug Dev. Technol. 5, 343–354 (2007).

    CAS  PubMed  Google Scholar 

  109. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  PubMed  Google Scholar 

  110. Ohren, J.F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    CAS  PubMed  Google Scholar 

  111. Ekins, S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discov. Today 9, 276–285 (2004).

    CAS  PubMed  Google Scholar 

  112. Chong, C.R. & Sullivan, D.J., Jr. New uses for old drugs. Nature 448, 645–646 (2007).

    CAS  PubMed  Google Scholar 

  113. Weber, A. et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J. Med. Chem. 47, 550–557 (2004).

    CAS  PubMed  Google Scholar 

  114. Mencher, S.K. & Wang, L.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).

    PubMed  PubMed Central  Google Scholar 

  115. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    CAS  PubMed  Google Scholar 

  116. Morphy, R., Kay, C. & Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004).

    CAS  PubMed  Google Scholar 

  117. Gómez, A., Domedel; N., Cedaño' J., Pinol, J. & Querol, E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19, 895–896 (2003).

    PubMed  Google Scholar 

  118. Macchiarulo, A., Nobeli; I . & Thornton, J.M. Ligand selectivity and competition between enzymes in silico. Nat. Biotechnol. 22, 1039–1045 (2004).

    CAS  PubMed  Google Scholar 

  119. Favia, A.D., Nobeli, I., Glaser, F. & Thornton, J.M. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J. Mol. Biol. 375, 855–874 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank David Moss for his suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Nobeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobeli, I., Favia, A. & Thornton, J. Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27, 157–167 (2009). https://doi.org/10.1038/nbt1519

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing